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A theory. of matching processes is developed witlUn which serial models and parallel
models based on within-stage independent intercompletiontimes are defined. These
models are then specialized to a class of processes possessing exponential intercomple-
tion time densities and equivalence properties of parallel and serial models within this
class are investigated. Nonequivalence theorems are proved that designate possible
differences in "same" (+) and different (-) matching rates as important in testing
parallel and serial models. An experimental paradigm is then derived with the property
that if + rates are different from ...:...rates, and if proc'essing is self-terminating, then
the parallel and serial models are distinguishable at the level of mean reaction times.
The serial class of models that is tested by this paradigm includes a large number of
stochastic distributions whose central assumption is additivity of element processing
times. The corresponding parallel class of models is currently limited to those assuming
exponential intercompletion times. A numerical example and an example of non-
parametric relations predicted by the serial or parallel models are given. Some ad-
vantages and limitations of the present treatl11ent are discussed.

I. INTRODUCTION

Within the realm of human cognition, there are many instances where information
from one source or subprocess must make contact with and be compared with informa-
tion from another source or subprocess. This paper is concerned with the stochastic
properties of such comparison processes as can be represented by one set of elements
matched against another set. Each element in one set either matches (is identical to)
or mismatches any given element in the other set. The applications of the theorems
discussed in this paper are primarily directed to reaction time paradigms with low error
rates. However, the mathematical theory provides the distribution of uncompleted
elements at any point in time and this may be paired with deadline and response bias
assumptions to derive predictions of speed-accuracy tradeoff.

1 I am grateful to Vv. K. Estes, Rockefeller University and the National Institute for General
Medical Sciences .for support of a visiting Associate Professorship under Grant GMl6735,
during which time (1972-73) about 40% of the present work was completed. I am appreciative
of the comments on an early draft of this manuscript by W. K. Estes, J. C. Falmagne, S. Link,
F. Norman, and D. Vorberg, and for helpful remarks on exposition by W. Batchelder and two
referees.
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Some of the kinds of comparison processing to which this work may be relevant
are: (I) Pattern recognition: A single pattern (e.g., a letter) is presented on each trial

and the subject~J~~~ iM~~'h~ aJ5~~y~eJ~~nt~i~~,N}~dg~~~~!n\(e.g., T~wnsend,
197Ia). The match IS~etweett &e stlmuiuJ. pa~ern and memory' mformatlOn, cor-

responding to the total set of pq$MJ:>J~'p1',tter.f\S,~~~!~ in some fashion in the subject's
memory. The term "element," used below in theorizing, might refer to a feature of a
pattern" ~nd"itr:itching>\wbtdii 4rofef\10\\oompanng,the,'stimulns\ pattern features \with
features stored in memory. (2) Multidimensional pattern discrimination: On each trial,
two patterns that may differ on one or more dim~nsions (size, color, etc.) are compared

and i~H~'~u6j~"c~'[i:!spbHd's''''~aWif''ffttnJ>piittefiis'afe"identMl' '8nJ'eac~' diti'l'engion and
"diffi?~Jt'r>'b'1'h'rw1~e"-"(e'.t'.n~~ ;etjj"3}9'66:n1h~"'d~'hl~ii'1' 'iJi~t'!u;n'd~i'''cft"ml?1rison
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or IH~~r!'W9~~.~mg r~I;c;,~~\ ~}~t9~WA. ,Yi\t~~~(PI~~~; "f}.j ~.lg.~~P',:H~,~L,A:J)J{,"play
and ,mmnoqy~lui:DneJQ'r.DWje~!iymbals.:Ot1 patt~nslJ~e..giy<:n~t9"tb~'..Il~b~t..:p~;each

trial-.MWwed:~Y' -af6econd>~isptat't:!01\tl1in:ing"oiil!t-oP1m~re) sYmbols o1U...'be"compared

witlr:1ffi.8<_t,PysY:J.n1)'oJIi. (~tteh;r'V~~miPs~iffi'{ar a'P'p~eherl~.i8Wiis '~1\'idied 1Ifl';putting
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designs are closely related to a two-alternative forced choice situation invented by
Estes and Taylor (1964). The usual breakdown in these experiments 'would have
the symbols being the elements, but the symbol elements may themselves be considered
as made up of smaller features. In the latter instance, processing questions may be
found on both levels.

This paper is divided, into seven sections. In the remainder of the Introduction,
previous germane work is briefly reviewed and the approach and goals of the present
study are discussed. The reader. interested in moving immediately to the formal
development may wish to bypass the remainder of this section. The secoQd section
builds a theoretical framework for explication of the structure of comparison pro-
cessing and its modeling. Section 3 introduces the models with which we are specifically
concerned here and gives them a mathematical characterization. Next, Section 4
provides general equivalence and nonequivalence results for the present serial and
parallel models. Following this, a special case (Section 5) closely related to a con-
temporary type ~f matching experiment is developed in detail and is used to illustrate

model structure and equivalence results. The sixth section gives a par~llel-serial
testing paradigm (PST), derived from considerations of the earlier theorems, that
tests the present serial and parallel models against one another. Some concluding
remarks on PST appear in the seventh and final section. Reading the first two
sections (excluding the Introduction) is necessary for understanding the rest of the
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STOCHASTIC THEORY OF MATCHING PROCESSES 3

paper. However, the proofs of the theorems of Section 4 may be skipped and their
content garnered from their exemplification in Section 5. It may also be helpful to
read Section 5 in conjunction with Section 3. The last two sections, which develop
and discuss PST, require familiarity with earlier notation and rest upon the theorems
of Section 4, but may be read independently of the latter.

Accompanying the significant interest in theories of how information is processed,
stored and used (not to be confused with information theory? per se are experiments
and models addressed to questions of how processing resources are deployed to
complete some finite number of comparisons, as well as how much in the way of
resources are available. However, in at least certain major areas of research not only
has there been a general lack of theoretical framework, but rather little in the way of
mathematical treatment seems to have been accorded either models or data analysis.

Attempts have recently been initiated to set up a qualitative framework for some
important aspects of processing (Gardner, 1973; Townsend, 1971b) and to provide a
mathematical framework and properties of identifiability for these and similar aspects
(Townsend, 1969, 1972, J974; Townsend & Roos, 1973). Among such aspects of
processing mechanisms are the dichotomies of self-terminating vs exhaustive pro-
cessing, dependence vs independence of processing, limited vs unlimited capacity
and serial vs parallel processing. (For detailed discussions of these issues the reader is
referred to Gardner, 1973; Townsend, 1974.) Although all of these can be facilely
discussed in the mathematical context dev~loped in the above papers, the parallel
vs serial issue (roughly simultaneous vs one-at-a-time processing of several elements)
has been emphasized because of its great interest to investigators (see, e.g., Haber,
1969, Introduction) and the fact that problems of parallel-serial testability were shown
to be much more refractory than was previously recognized. Further, the other issues
differ in their interpretation according as processing is parallel or serial. A brief, more
specific review of recent related work follows.

Historically, Christie and Luce (1956) appear to have been the first to engage in a
mathematical investigation of parallel and serial processes within a psychological
context. Their work was primarily concerned with processing of all the elements with
constant and equal rates on distinct elements. In their case, an "element" was a
component of a decision process, and they considered the general case of unknown
numbers of objects. Typically, experimenters have unfortunately not employed these
results in other than a qualitative manner. Further, it later became apparent that there
existed severe problems of parallel-serial equivalence even when the number of
objects to be processed was assumed known (Townsend, 1969, 197Ib). Although the
most general results to date on the latter problem have not yet been embedded in
the case where the number of objects is not known, we can probably expect the
difficulties in testability to be substantially augmented.

McGill and Gibbon (1965) provided an exposition on the general gamma distribu-
tion, in particular with regard to its use in modeling RT. Reaction time was viewed as
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possibly consisting of a sequence of stages, the random duration of each stage being
governed by an exponential density. This hypothesis corresponds to Townsend's
(1971b, 1972) assumption of exponential intercompletion times within stages of
processing a finite number of inputs. That assumption was employed in establishing
the primary equivalence results early in the latter paper (specifically, Townsend, 1972,
p. 174-184). .

Rumelha~ (1970) succeeded in fitting data from a wide array of visual multisymbol
processing experiments. His model was parallel across the various symbols but features
were assumed to be extracted one at a time. His intercompletion times for features
we"re distributed exponentially. Like McGill and Gibbon (1965), Rumelhart was not
specifically concerned with the parallel-serial equivalence question. However, it
follows from recent results that the aspect of his model concerned with processing of

" features of individual symbols may be equally well expressed as serial or parallel
(Townsend, 1971b, 1972). A remark on the overall characteristics ofthe model will be
made below.

In a development directly germane to parallel-serial testability, Thomas (1969)
showed that under certain circumstances, nonparametric tests can be constructed to
test between independent, self-terminating parallel models and" nonindependent
self-terminating serial models. The type of independence referred to here is that of
total ,completion times (see Townsend, 1974, p. 152). Some further discussion of
Thomas' work will be found in the final se<;tion.

A series of studies on parallel and serial processing that the present writer has been
involved with over the last few years can be. briefly summarized as follows.

The first paper (1969) dealt with the absolute nontestability of serial models that
predict, for example, increasing straight lines as n, the number of elements to be
processed, is varied, and the mathematically equivalent parallel model, both assuming
exponential intercompletion times. The existence of serial models equivalent to
certain parallel independent models was also indicated. Atkinson et al. (1969) listed a
special'case of the former results. A qualitative note (197Ib) summarized these and
some of the results presented in a more mathematical treatment (1972). The latter
extended the findings in several directions. (I) Consider the classes of all parallel and
serial models based on independent exponential intercompletion times. The parallel
models further possess the property of independence of processing among the elements
during a single stage (the state of the system between two successive element com-
pletions). Mixed serial models assume a set of probabilities, summing to I, on the
different possible processing orders for each trial. Mixed parallel models assume a set
of more than one parallel system, one of which is implemented on each trial, according
to a set of probabilities summing to I. These classes of mixed serial and mixed parallel
models are nonequivalent in that there are models in each class that are not identical
to any model in the other class. However, there are substantial degenerate regions
where equivalencies exist. Thus, the class of unmixed parallel models is contained in

...
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STOCHASTIC THEORY OF MATCHING PROCESSES 5

the class of mixed serial models. The class of unmixed serial models (only one proces-
sing order is ever used) may be approximated arbitrarily closely by the class of unmixed
paralIel models but is never equivalent to a paralIel model. The classes of models in
which these results are based may be viewed as probability mixtures of general gamma
distributions ofthe type investigated by McGill aild Gibbon (1965). (2) There may be
diffiCulty or impossibility of testability at different levels so that even models that are
not mathematicalIy equivalent may give identical predictions at a given level, for
example, for mean reaction times. (3) Related to (2), it may sometimes be feasible
to take two nonequivalent models that give the>same predictions at one level, and
derive an implied difference in predictions at another level and thus a potential testable
consequence. (4) A functional equation that is necessary for mathematical equivalence
of parallel and serial models to hold was shown and some special cases that did and
did not satisfy this equation were pointed out. (5) It was shown that Rumelhart's
(1970) model is a special case of a class of paralIel models that is equivalent to a class
of hybrid time-sharing models. The nonhomogeneous aspect of the Rumelhart model
does not affect the efficacy of the proof and was omitted. Two alternate nonparalIel
interpretations are either as a serial model with a rather bizarre density function or as a
serial model with a variable number of features processed from trial-to-trial rather
than the fixed criterial numbers as the paralIel model supposes. (6) The problem of
mimicking by approximation, rather than by actual equivalence, on one or more
statistics was treated. For instance, a paralIei independent model is not actualIy
equivalent to typical serial models that predict a straight mean RT function as n

increases. Yet such models can predict this function, since it is dependent only on
first moments, not on other aspects of the model's probability distribution. Such
paralIel models apparently had been thought to be falsified by linear RT functions
that increase fairly rapidly (Sternberg, 1966), but this is wrong.

Addressing a different type of approximation, a theorem was proved showing that
without knowledge of n (e.g., as in the Christie and Luce (1956) case, the elements
might be internal to the human processor) or other ameliorating observable quantities,
a serial model made up of gamma distributions can always be constructed to arbitrarily
closely approximate any parallel processing distribution. (7) Qualitative considerations
concerning conclusions based on "naturalness" and "intuitive value" were entertained.

. More recent work includes a detailed treatment of the (parallel vs serial) X (ex-
haustive vs self-terminating) X (independent vs dependent) X (unlimited vs limited
capacity) processing dimensions emphasizing their logical and mathematical in-
dependence, some of the confusions appearing in recent literature, and the way various
combinations of these dimensions may be employed in model building (Townsend,
1974). Also completed are theorems exhibiting fairly broad conditions (i.e., not
restricted to models assuming exponential intercompletion times) on models satisfying
a functional equation posed earlier (1972) that is necessary for paralIel and serial
models to be equivalent (Townsend, in press).
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One of the first obvious conclusions to be drawn from the above work is that many,
if not most, of the experimental studies purporting to test serial vs parallel processing
have not in reality done so. Two directions present themselves. One is to develop
mathematical theories of information processing that tell where to look for observable
differences between parallel and serial processing and indeed, other important aspects
of processing as well (e.g., self-termination vs exhaustive processing, etc.). The'other
is to delve into the physiology of the central nervous system. Although significant
progress has been recorded recently in the latter, it appears that a close and certain
linkage of the neuroanatomy and physiology with much of the cognitive processing
literature is not presently at hand.

The former, mathematical theory building can be roughly divided into two appro-
aches. The fi.rst is the utilization of finer grained statistics and distribution information

. in contemporary and past experiments. To the extent that the underlying processing
distributions are not of the type where equivalence obtains between say, parallel and
serial models, this type of information may be of value. The second is the construction
of experimental paradigms, especially designed from consideration of the pertinent
mathematical structures to produce testable empirical consequences.

The second approach is the one followed here. Classes of serial and parallel models
are studied in terms of their structure and equivalence properties. Out of this structure
comC$ an experimental paradigm that tests between these classes of serial vs parallel
models at the level of observable mean RTs.

More specifically, the present work provides a relatively thorough and rigorous
treatment of parallel and serial comparison models based on exponential intercom-
pletion times. Intercompletion time is the time between the successive completion
of two elements. Some results presented earlier (e.g., some of the equivalence mappings
in Townsend, 1972) in an informal manner are special cases of the theorems given here.
The generalizations in the work here take three directions: (I) Pairs of elements are
considered to be processed by comparison against each other; previously, only single
elements were considered. (2) There are an .arbitrary number of elements in each of
two sets (nl in the first, n2 in the second) from which one or more pairs are drawn for
processing or .matching; previous proofs are based on two or three elements. Thus,
predictions for special cases of specified numbers may be immediately obtained by
plugging the numbers in formulas presented here. (3) The processing rates, whether
serial or parallel, are allowed to depend not only upon the individual stimulus locations
of the pair of elements and the processing order, but also upon whether an identity (+ )
match or a mismatch (-) comparison is taking place. Items (I) and (2) allow formulas
and theorem results to be applied to any situation involving processing of pairs of
elements from two finite sets, with arbitrary numbers of elements in each. Of course,
when only a single set of elements is undergoing processing, the present formulation
gives model structure and predictions by allowing certain parameters to attain degen-
erate values.
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Generalization (3) is the most important. Within classes of models based on ex-
ponential intercompletion times, and with rates depen,dent only on individual locations
andior processing order, it has been shown that the class of unmixed parallel models is
contained within the class of mixed serial models, but not vice versa, but that mixed
parallel models were not contained within the claSs of mixed serial models (Townsend,
1972J. However, it is shown in the present study that when processing or comparison
rates are different for + comparisons than for - comparisons, the class of unmixed
parallel models is neither contained in nor contains the class of mixed serial models.2
Further, the cases previously found where serial models could not be mimicked by
parallel models often precluded experimental exploitation due to the lack of observable
quantities in the usual experimental settings (see, e.g., Townsend, 1972; Townsend,
1974). When - rates are distinct from + rates, it is possible to design conditions
where fundamental differences are predicted in easily acquired mean RT's. Such an
experimental paradigm is exhibited and testability theorems are proved here, along
with comments on potential advantages and pitfalls associated with its application.

In previous papers (To~nsend, 1971b, 1972), two models, one parallel, the other
serial, were said to be non identifiable if and only if there existed a mapping between
the parallel and serial parameters in such a way that the stochastic processes were
mathematically identical; otherwise they were said to be identifiable. This is consistent
with earlier uses of "identifiability" (e.g., Hurwicz, 1950) when as "model" we take
the union of the parallel and serial models w.e wish to consider, and when as "data"
we take the union of any data defining the parallel and serial processes (e.g., the set of all
realizations of the two processes). Although mathematically correct, this approach is
not wholly in line with previous terminology in psychology (see, e.g., Greeno &
Steiner, 1968). It also potentially obscures questions of identifiability that may arise
within a parallel or serial model and with r-espect to either data that is short of defining
a process, perhaps a set of expectations or data that is sampled, for example a set of
observed means. To attempt a more appropriate terminology the development will
follow Greeno and Steiners' usage in referring to "equivalence" between theories
(or models, with which we shall be concerned here) rather than "identifiability."
"Equivalence" as employed in the present context is made precise below and notions
of testability are consequent.

It is pertinent to note here that if it were possible and realistic to assume that
processing occurred in discrete time (assuming the concurrent observability problem
had been solved) then it might be a simple matter to discriminate parallel from serial
processing, since serial processing excludes the possibility that more than one element
can be completed in any single interval, but parallel processing does not. Even the
analog to exponential processing of elements, geometric processing, would in this case

· Hereafter, the discussion will be centered on mixed serial models (more than one processing
order may occur) and unmixed parallel models (the same set of parallel rates apply on every
trial) and the mixing designation dropped for brevity.

--



8 JAMES T. TOWNSEND

present no difficulty. Unfortunately, attempts to represent human information
processing as involving immutable time-quanta have not been notably successful.

In the present paper, the mathematics for particular serial and parallel models are
developed that may be applicable when an experiment 'requires matching or com-
parison (matching is a primitive with the usual interpretation of detecting whether
or not two elements differ) and show under what conditions they are nonequivalent.
Further, as noted above, it is shown that experiments can be designed where parallel
and serial differences in predictions are obtained at the level of overall mean reaction
times.

2. MATCHING: SYSTEMS, MODELS, AND PARALLEL-SERIAL EQUIVALENCE

We shall follow the tack of using informal definitions to aid in ~he somewhat formi-
dable task of bookkeeping and exposition. It should not be supposed, however, that
the present formulation attempts to be axiomatic in a strict S(:nse.

DEFINITIONI. An experimental trial is a matching trial if and only if a subject
matcbes the elements from one (nonempty) finite stimulus set, referred to as S} , with
the elements from another (nonempty) finit~ stimulus set, S2 .

It is assumed that the elements of both S} and S2 may be ordered along at least one
dimension, called serial position. It is also assumed that S} and S2 have been presented
to the subject and that they are themselves subsets of other "alphabets" 9;., 9'2.
Often, 9;. == ~ (e.g., Atkinson et ai., 1969) but occasionally one or more elements
in one, say S2 may be drawn from a set with members not contained in 9;. although
all elements in 9;. are in 9'2. Hence, in the latter case 9;. ~ 9'2 (e.g., Egeth, Jonides,
& Wall, 1972). As illustration, let 9;. be a set of numerals and 9'2 be the same set of
numerals union the set of English uppercase letters. In a typical experimental trial,
S} , a subset of 9;. , is presented to the subject. Following this, 82 , a subs,et of 9'2 ,
containing zero or more members' of S} , is presented and the subject's task is to

indicate whether or not a member of S} was in fact contain~d in S2 . The use of
elements in 9'2 that are not in 9;. allows the study of category effects in perception and
memory (see, e.g., Brand, 1971; Egeth, Jonides,& Wall, 1972). Hereafter, the terms
"element" and "stimulus" will be used interchangeably, although the processing
structure developed here is also appropriate to systems matching totally unobservable
elements. '

It should be noted that in general, the classes of elements from which the sets
9;., ~ are drawn will be germane in modeling specific psychological situations.

However, reference to these classes can be suppressed in most of the development
here and to do so will permit simplificationof an already complex notation.
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Corresponding to the notion of a matching trial is that of a simple matching experi-
ment. The latter is relevant to definitions of parallel and serial models and to estab-
lishment of model diversity.

I?EFINITION2. A simple matching experiment is a set of matching trials made up
of two types of trials: (a) T1 trials: None of the elements in 81 match any of those in
82 and (b) T2 trials: One or more of the elements in 81 and 82 match each other.

Next, we proceed to give definitions of systems, serial, parallel and hybrid systems,

models, total. equivalence and x-diversity. BaSically, systems are viewed here as
composed of mechanisms made out of living or nonliving material and that function
in real time and space. Models are abstract descriptIons of systems. Although the
elements referred to immediately below will subsequently be interpreted as themselves
pairs of elements (tuples) from 81 and 82, it seems preferable to employ "element" in a
universal sense here to lend generality to certain of the following definitions. A
postulate that applies throughout the paper is that rales of processing, in systems or
models, are finite.

DEFINITION3. A serial system is a material (i.e., real) entity that (a) processes
members of a set of elements one at a time; (b) each element is completed before
another is begun; (c) processing on each successive element may be instituted without
delay when the preceding one is completed; (d) the order of processing may, in
principle, be established before processing actually begins according to the serial
positions of the elements; (e) the processing time of an individual element may depend
on its nature (e.g., identity); (f) but neither the order of processing nor the processing
time of an element can depend on the nature (e.g., identity) of unfinished elements.

Items (d), (e), and (f) of Definition 3 will be particularly important in establishing
differences between parallel and serial models.

DEFINITION4. A parallel system is a material entity that (a) begins processing
on all members of a set of elements simultaneously; (b) processing of each element
proceeds until it is completed; (c) the order of completion of the elements is determined
entirely by their processing times which in turn may depend on (d) the nature of the
elements (e.g., identity) and their serial positions; (e) but the processing time of an
element on a given trial cannot depend on the order (relative to serial position) of
completion of elements completed after it.

As in the serial case, items (d), (e) will be critical in deriving distinctions between
serial and parallel models. Definition 5 establishes a category of systems which by
fiat exhausts the remaining types of processing systems.

DEFINITION5. A hybrid system is one that does not satisfy Definitions 3 or 4.

- --
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Figure Ia shows the activity of a serial and a parallel system, respectively, when
two elements 01 = (a), Oz= (b), are being processed. The HZ" variables are the
processing times on the individual elements. That is, Za is the amount of time actuallyJ

spent by the system on (a) when it happens to be completed first and Zb. is the cor-
responding time spent on (b) on the same type of trial «a) completed first) and so on.
In Fig. Ib, the same activity is viewed in terms of the durations bctween comp1etion

of the elements, hereafter called intercompletion times. So, ta, is the time from t = 0
up until element (a) is completed, when it is finished first; tb is the corresponding time1

when (b) is completed first (not shown in Fig. I}. Similarly, tb is the duration from. .

Serial system

10-'-- Zal
.

+
+
t

(o)completed

Zb2---t
t
t

(b)completcd

Parallel system

to---zal
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,
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Zb2 4
,
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~tQ1---t
I I

t
( Qlcompleled

,. tQl '1 tb2 e1
I I I

t
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Ib

FIG. 1. (a) Schema showing total time system is engaged in processing (a) and (6) in a serial
or parallel system when (a) is completed first. (b) Schema showing intercompletion times in
processing (a) and (6) in a serial or parallel system when (a) is completed first. Figures la and Ib
reprinted with permission from J. T. Townsend, "Issues and Models Concerning the Processing
of a Finite Number of Inputs," in B. H. Kantowitz (Ed.), Human Information Processing:
Tutotials in Performance and Cognition (Potomac, Md.: Erlbaum, 1974).
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the instant of completion of (a) up until (b) is also finished. Finally, tu is the corre-I

sponding time between the instant of completion of (b) and the completion of (a)

where (b) is completed first (not shown in Fig. I). The intercompletion times tal' tb1
can also be said to be the durations of stage 1 (no elements completed) and ta , tb theI I

durations of stage 2, the time between the first and the second completions.
It is very important to observe that in a serial system, the element processing times

are the intercompletion times. Thus, in Fig. I, Za = to and Zb = tb in the case of1 1 . I I

serial processing. In parallel systems, on the other hand, only the first element to be

completed will possess a processing time equat to an intercompletion time (e.g.,
ta = Za ). All'other paraHei element processing times will be sums of intercompletion1 1

times. For instance, in Fig. I, Zb = ta + tb in parallel processing. A primary sourceI 1 I

of difficulty in experimentally discriminating parallel and serial systems lies in the
nonobservability of the element times themselves, the z's. All we can see in outputs
(at best) are the intercompletion times. As may be inferred from Fig. 1 and this fact,
the intercompletion times are an important class of theoretical va~iables. When inter-
completion times are independent, as they will be in the models considered here, the
resulting convenient convolution properties of characteristic or moment-generating
functions are very useful. We shall depend on them a great deal.

The systems of Definitions 3 to 5 are mutually exclusive and together they exhaust
the class of processing systems. Examples of processing systems might be subsystems
of a brain, a specific queuing system, a digital computer or a pattern recognition device.
The more subsystems that make up a system and the larger the class of elements to be
processed by a system, the less likely it can be defined as serial or parallel and the more
likely it is hybrid. Again, it is critical to note that "sySi:em" is employed here.to refer
to actual biological or mechanical entities. In many situations, "system" may be
(and is) employed as an abstraction much like we use "model" here. It is probably
preferable to use a common word and establish a convention for its meaning rather
than invent neologisms.

Corresponding to systems are their numerical or quantitative descriptions. It is
typical of many biological and psychological systems that such descriptions are
stochastic, so that even the most refined and stable data lead to a probability distribu-
tion on observable events and on the events internal and external to the system that
together yield the observed distribution. Thus, investigation of the internal mecha-
nisms and their interaction must be complemented by a theory of estimation leading

to) "best" estimates of the parameters of a probability distribution and by a theory of
contribution of external factors to the observed distribution. We will here be concerned

with the mathematical description of the internal mechanisms of systems (of matching
processes) with little reference to the latter two problems. For example, the problem
of estimation per se will not be touched on, but consequences of the existence of
certain observable statistics (and therefore a priori assumed susceptibility to estima-
tion) will be considered. .
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Our quantitative description will be termed a "model" and "model" will be takcn
to be a stochastic process. Deterministic systems (fixed z-variablcs) may be considered
as degenerate stochastic processes.

DEFINITION6. A model of a processing system is a subclass of the class of stochastic
processes whose domain and sigma field correspond to the processing event 'possi-
bilities in the system (see, e.g., Loeve, 1955).

Definitions 7 to 9 attempt to capture the basic characteristics of paralIcl, serial, and
hybrid models. In order to conserve the intuitive aspects of the structure of such
processes and because the processes examined in detail below can be expressed in
such a way, Definitions 7 to 9 will be given in terms of probability densities.

It would, in a sense, be most natural to first define serial and paralIel models in
terms of the z-variables-the actual processing times. However, alI consequent
theorems on equivalence are greatly simplified by development in terms of the (poten-
tially observable) intercompletion times (the t's). Furthermore, tlte definitions may be
written in terms of the intercompletion times in such a way that no loss of generality
is incurred, and this is the course taken here.

The earlier definitions of systems explicitly allow for dependence of an element's or
(element-pair's) processing time upon the specific individual nature of that element.
However, the major results in this paper are a joint result of paralIel-serial differences
in dependence on serial position, processing order and match (+) vs mismatch (-)
times. The identity of the elements will only be important here in defining a match
vs a mismatch. Therefore, the following definitions and derivations wiII not take into
account processing time or possible order differences that depend explicitly on element
identity per se.

In Townsend (1972), only single elements were considered to be processed. This
corresponds, of course, to letting 81 or 8z contain one element in a matching experi-
ment so that the "processing" of the multielement set is the matching of them against
the single element in the other set. Since the processing times, and in a serial system
the order of processing, may depend on the serial positions of both elements. in a pair,
we adopt a lexicographic ordering ;S on the element pairs (ou, 0Zi), 0u E 81, 0ZiE 8z
so that (ou, 0Zi) ;S (on, 0zm) if and only if either i < k or i = k and j ~ m. This
amounts to taking the serial position of the 81 eIe~ent as predominant and secondarily
ordering according to the 8z element. For example, (013, 025) ;S (0.., ou) but
(013,OU) ;S (°13,°25)' We may then assign the numbers I to "tnz to the consequent
ordered list of pairs and call each number the "serial position index" or simply "serial
position" of any particular pair. Therefore the term "serial position" (of a p;nr) will be
used with this meaning henceforth and ak = (Oli , 0Zi) wiII be an element pair with
serial position k.

Consider a set of N = nlnz element pairs {aa (indexed by serial position) to be
processed, i = 1,2, ..., N and suppose that stage I occupies the time interval from the

-.-.-.-...
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start of processing up until the first pair completes processing. stage 2 occupies the
time from the completion of the first pair to the completion of the second and so on.
Let A(h" T, 0, 8. iT) be the parameter set of a specified probability distribution
within a serial model where h, designates the serial position of the pair processed
during stage T, 0 = (ak ,ak , ak ) is a vector denoting a particular order ofI' N
processing the pairs, according to serial position (ht indexes the serial position of the
element completed first), 8 = +1 if the element pair is a match and ~l if it is a
mismatch, and i, = (II , 12,..., 1'-1)' is a vector representing the successive inter-
completion times and their order, up to stage T. .

We then have the following definition of a serial model.

DEFINITION7. A serial model for matching is a stochastic process specified by the
following type of joint probability density on intercompletion times between the
successive completions of pairs of elements.

P8)(II' 12, IN' 0)
N

= P(O) TI f(tT I A(k, , T, 0,8, i,)),
,-1

where (s) refers to "serial," A(k,. . T,0, 8, ir) is as described above, P(O) is the proba-
bility that the order of processing the pairs is that given in the argument, and I, is the
intercompletion time between pair ak and ak . The termf(t, IA(k, ,T. 0.8.1,)) is ar-l . r
probability density conditioned via its parameter set on the order of the various serial
positions, whether or not the pair in position kr is composed of matching or mis-
matching stimuli, and the previous T- I intercompletion times. By convention. it =
(0); that is, the zeroth intercompletion time is zero. Notably, any term in the product

P(O) = P(ak,) P(ak.1 ak,) ... P(OkNI ak,. ak.,..., akN_')

say P(ak, I ak, ,..., ak,_I) is independent of whether ak! .j > T is a matching (+) or
mismatching (-) pair. Similarly, "A" at stage T is independent of whether any element
completed later is a + or - comparison (cf. Definition 3).

In cases of particular serial models where the order is selected as processing occurs.
rather than before processing begins, it simply happens that at a stage T, if say. pair aj
is processed, that its rate will be independent of what happens next. This in no way
invalidates Definition 7. What it does mean is that the parameter set A at stage Twill,
in that case, be completely determined by i, and by the first T-I positions of O. It
would also be natural, but no more correct in this instance where the order is deter-

mined as processing proceeds, to write
..

P(O) = P(ak,) P(ak. I ak,) ... P(OkN I ak, ' ak. ,..., a~'N_')'

It can be seen from the constraints on the parameters (P, A) that a serial model is
not just a general chain-rule stochastic definition of a matching trial. It can further

--
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be seen that certain parallel or hybrid models would. in the case where clement
processing is not assumed to be an alI-or-none event. specify a very different event
space (or sigma field) for a trial. For instance. a time-sharing model with possible
partial processing would not be associated with the same event space as the set of
serial models.

Tfle stochastic processes defined by Definition 7 are quite general. Jf two further
conditions hold. processes satisfying Definition 7 form a two-dimensional Markov
process with the state of the system on one dimension and tr on the other. The first
condition is that A(kr. r. O.S. ir) = A(kr . r. Ot S). that is. that succeeding inter-
cori-tpletion times are independent of the preceding ones. The second condition is thatr--l

f(tr IA(kr . r, 0, S» be dependent only on the state of the system at time t = Lk-l tk ,
in particular the order up to that point, and not the order of later completed elements.

. Further, it follows in this special case that the process formed by recording the state
of the system across time. is a semi-Markov or Markov renewal process (see. e.g.,
Pyke. 196Ia.b). The present paper is concerned with different matters but it may be
interesting in the future to attempt application of semi-Markov machinery to serial

and paralIel systems. .

Assume that Fig. I depicts a case where 81 consists of two elements. (a) and (b).
and 82 consists of one el~ment, say (c). and that (a) and (b) are processed by being
matched against the 82 element. Let (a) have serial position I and (b) serial position 2.
Since 82 has but one member. it is possible. in this case to simply write the order in
terms of the elements of 81 and the serial density of Fig. Ib is

P"(t1, t21(01,b» = P«a. b»f(t11 A(I. I. (a. b).S, i1»f(t21 A(2. 2, (a, b), S, i2».

Now, let B(hro r, O(r).S. ir) play the parameter role for parallel models analogous
to that of A in serial models. Therefore. i = hn in ir will represent an indexing of ele-
ment pairs that remain unfinished until at least the end of stage r + I. wherethere
are N-r such indices at stage r. The only difference in A and B is that Buses O(r) =
(ak1' aks, akr_1),that is. the order of processing through stage r - I whereas A is
potentialIy dependent on 0 = O(N). The term 0 will be used to demarcate portions
of the order vector not yet filIedup. The index kr wilI,as above. designate the element
actualIy completed at stage r. The supercript (p) below will refer to parallel processing.
The function F isjust one minus the cumulative distribution function. So, for example,
F(t2 IB(h2 , 2. 0(2), -I. i2» is the probability that the pair in serial position h2 has
not yet been completed during stage 2 when t2 time units of that stage have elapsed,
given that i2 = (t1). that is that the time necessary for stage 1was t1 and h2 refers to a
mismatching pair. We could also equivalently write. for arbitrary stage r: .

F(tr I B(hr. r. O(r), S. iT» = f.~ f(t: I B(hr . r. O(r). S. ir» dt:,tr-er

where f is again a density function.

.-



, STOCHASTIC THEORY OF MATCHING PROCESSES 15

DEFINITION8. A parallel model for matching is a stochastic process specified
by the following joint probability density on intercompletion times.

jCP)(I] , 12"", IN ; 0) = F(I] IB(h] , I, O(J), S, i]))F(I] IB(i] , J, 0(1),8, i1))
...F(I] IB(j] ,. 1, 0(1), S,'i])) f(l] IB(k] , I, 0(1), S, i]))
... F(12IB(h2 , 2, 0(2), S, i2))F(12IB(i2 , 2, 0(2), S, i2))
... F(121B(j2 ,2,0(2),8, i2))f(121B(k2 ,2,0(2), S, iz))
'..F(tN-11 B(hN_]' /Ii - I, O(N -I), S, iN_I))

. f(IN-] IB(kN_] ,N - I,.O(N - I), S, iN-I))

. f(IN IB(kN , N, O(N), S, iN))'

where the remaining notation is as in Definition 7.

The most striking difference between Definitions 7 and 8 is that in parallel proces-
sing, when say, pair h] finishes first at time I], the probabiJity that each of the other
pairs has not been completed during that time must be included. Consider as a special
instance the parallel proce~sing illustrated in Fig. I. The parallel density function for
this example, again assuming two elements (a), (b) in 8] and only one in 82, is

f<P)(I] , 12 ; <a, b»)

= [F(I] IB(2, I, 0(1), S, i]))f(l] IB(1, 1,0(1), S, i]))]f(t2 IB(2, 2, 0(2), S, iz)).

The quantity in brackets is the probability expression for stage I and the f(/21 .)
expression is the probability density function for element (b) during stage 2., after (a)
has completed comparison against the element in 82,

Observe too that the parallel models are capable of less a priori dependence on
order of processing according to serial position, than the serial models, since the order
"evolves" in a parallel system. But, in a general serial system that order may be
viewed as selected beforehand and thus allow say, the parameter for the first pair
processed to depend on which serial position finishes last. A parallel system (and
hence a parallel model) cannot realistically do this, since that would make the model

futuristic, in knowing what chance event will later occur (cf. Definition 4).
To illustrate this principle, an example requiring at least three element pairs is

required. Let 8] = {a] , b2 , ca} and 8z = {d} where the subscripts in 8] denote serial
positions. Now consider the parallel probability density for the. order of completion
<a] , h2 , ca) vs that for the order <a] , Ca, b2):

jCP)(/], 12, la ; <a,b, c»)
= [F(I] IB(2, I, <0, 0, 0), S, i]))

'F(l] IB(3, I, <0,0,0), S, i]))/(I]1 B(I, I, <0,0,0), S, i]))]
. [F(121B(3, 2, <a, 0, 0), S, i2))f(t21 B(2, 2, <a, 0, 0), S, i2))]
.f(t3 1 B(3, 3, <a,b, 0), S,i3)), .

- - -
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and

f'P)(tt ,12, t3 ; (a, c, b»
= [F(ttl B(2, I, (0,0,0),0, it»F(t}I B(3, I, (0,0, 0),0,i}»

.f(t}/B(I,I,(0, 0, 0),0,il))] [F(t2IB(2,2,(a, 0, 0),0,i2»

. f(t21 B(3, 2, (a, 0, 0),0, i2))]f(t31 B(2, 3, (a, c, 0),0, i3»,

respectively.
The serial terms for the two orders are

P'I(t} , t2, t3 ; (a, b, c»
= P«a, b, c» f(t} IA(I, I, (a, b,c), 0, il»

.f(t2 I A(2, 2, (a, b, c), 0, i2» f(t3 I A(3, 3, (a, b,c), 0, i3»
.and

f"'(t} , t2, t3 ; (a, c, b»
= P«a, c, b» f(t} IA(I, I, (a, c,b), 0, it»

. f(t21 A(3, 2, (a, c,b), 0, i2»f(t31 A(2, 3, (a, c, b), 0, i3»,

respectively.
The main difference in. the serial vs the parallel terms is that in the serial terms,

there .is explicit dependence on the order in the density at the very first stage and its
alternate with the other order. In contrast,. the terms of the first stage of the parallel
model do not express such dependence, that is, the joint probability term for stage
one is identical for the two orderS'.

It is important to note that this does not mean that the parallel density of the first
stage, when conditioned on order, cannot depend on that order. But the dependence
on order has to come from the dependence on the successive intercompletion times.
Thus, since the time to complete (a) may influence whether (b) or (c) is more likely
to finish next, the likelihood that (a) is completed at time t} may depend in a Bayesian
fashion on whether (b) or (c) finished second. In models that assume independent
successive intercompletion times, the order-conditional densities are in4ependent
of order. With one exception, all the models in the present paper are based on inde-
pendent successive intercompletion times. Thus, even the conditional densities of
the present paper are order-independent. This is not an immutable property of models
developed from exponential intercompletion times, as is well known in the study of
continuous Markov processes. The exception mentioned above is that the serial
models covered in Theorem 5 are essentially distribution free.

An additional characteristic of the parallel models as defined here is the ind~pendence
of the processing on the various elements during a single stage. For example P«a) is
1st at.time tl) = P«a) takes time t} and (b) takes longer) =F(tll B(2, 1,0(1),0, iJ)

f (II IB(1, I, O(I), 0, it» reflects this within-stage independence. This is not a neces-
sary property of parallel mode!s by any means, and could be altered with an increment

-- _.~-_._-_.
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in complexity of notation. Processes that involve exponential intercompletion times
(not necessarily completion times) possess this property of within stage independence.
and are the ones on which we concentrate in this paper. .

In summary. then. the basic property of a within-stage independent parallel model
is that the joint probability density on intercompletion times is given by a product-
series 'of products, each component product being a measure on the minimum waiting
time of a group of separate processes. This is shown in Definition 8 by the appearance
of parameters of all uncompleted pairs at each of stages 1,2, N.

Since parallelity and seriality are quite obviously very special types of processing.
it is most convenient to define as "hybrid" all other models, or systems. For con-
sistency. Definition 9 is written at the level of stochastic processes that possess densities
but extension to more general processes is possible.

DEFINITION9. A hybrid model for matching is a stochastic process that possesses
a probability density on the joint intercompletion times of a set of pairs but that does
not satisfy Definitions 6 or 7. -

Since models have been equated, for our purposes. with stochastic processes, it is
natural to define model equivalence in terms of identicality of the stochastic processes.3
However. it is obvious that two models may be equivalent for one type of trial or
experiment (i.e., context) but not so for another, so the definitions below are stated
with regard to context.

DEFINITION10. Two models, M}, M2' are totally equivalent. M} ==M2 with
respect to context C, if and only if they are defined by equivalent stochastic processes
within contextC. .

DEFINITIONII. Two models M} , M2 are x-diverse with respect to context C. if
and only if there exists some aspect x associated with their respective stochastic
processes that is different for M} and M2 .

The aspect x is purposely left unspecified in Definition 10; some examples of x are
(I) a measurable function on the underlying event space. (2) one or more mom~nts,
(3) a set of possible realizations of the processes. (4) the distribution itself. Number 4
will be especially useful and will be termed "distribution diverse." Number 4 is the
weakest type of diversity and simply means the two stochastic processes are not totally
equivalent. To be distribution diverse does not, of course. imply that t:.ere is no
stronger diversity.

DEFINITION]2. Two models M} , M2 are x-testable with respect to context C.
if and only if they are x-diverse and x can be observed or can be estimated within
context C.

3 For a reasonably general statement on equivalence of stochastic processes, the reader is
referred to Loeve (1955, p. 499).
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In some contexts it may be useful to distinguish betweel) cases where x can be
actually observed (for example, a sequence of responses in a learning experiment)
and those where x is a statistic with a sampling distribution (for example, mean
reaction time). This distinction will not be critical for discussion in thp. present study.

The definitions of parallel and serial model equivalence, diversity and testability are
diroctly implied by Definitions 10 to 12 and are formally omitted. The definitions of
parallel and serial systems are centered on simultaneous processing of all elements
versus one-at-a-time processing. It is important to keep the parallel-serial question
separate from other related questions such as liptited vs unlimited capacity systems,
and independent vs dependent pro~essing systems (see especially, Gardner, 1973;
Townsend, 1974). These aspects of processing as well as others (e.g., self-termination
vs exhaustiveness of processing) are logically independent of the parallel-serial issue,

. although certain combinations may seem more plausible in certain experimental
contexts.

3. MODELS BASED ON EXPONENTIAL INTERCOMPLETION TIMES

Among the probability. distributions so far examined, those involving exponential
intercompletion times (times between two successive element processing completions)
appear to offer the most severe problems of equivalence (Townsend, 1971b, 1972).
Certain models defined within rather large ciasses of exponential-intercompletion-time
processes are totally equivalent. On the other hand it has been shown that there are
other models in these classes that are not totally equivalent. Investigation of exponen-
tial processing appears to provide a conservative view of the possibilities for testing
serial against parallel processing. This fact may be of importance in psychological
experimentation, since useful ,nformation pertaining to specific characteristics of
distributions (e.g., higher moments) is often hard to come by. If parallel processing
is distinguishable in principle from serial processing when exponential processing is
assumed, the two will probably be distinguished for other, more complex distributions.
We proceed to develop a theory of serial and parallel processing with exponential
intercompletion times for matching paradigms.

DEFINITION13. A serial-exponential model (SEM) for matching experiments is a
processing model which is characterized by (I) a probability distribution over the
processing order of pairs of elements to be compared on a given trial, and (2) a set of
exponential processing rates for the different pairs which may, in turn, depend on
whether a pair matches (+) or mismatches (-), and on the entire processing order
specified in terms of the serial position index of each pair in 81 X 82,

As noted earlier, a "serial position index" may be assigned to each of the pairs in
81 X 82 that preserves the information of the serial positions of the individual elements

--
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and hence can be of potential use to a serial processor (or ourselves as classifiers) in
assigning processing orders on each trial. It will be convenient in the following to
assign an index to each of the N! processing orders, namely the numerals 1, 2 N!
and to employ this index in parameter descriptions instead of the order itself (0).

The parameter specification is then implied for the serial model when n1elements in
81 are compared with n2elements in 82 ; there being n1 . n2 = N potential comparisons
available for processing.

DEFINITION14. The serial sets of parameters for matching experiments are
given by .

(1) {P(K)}. where K = 1. N!, L;~1 P(K) = 1, and {P(K)} is the set of proba-
bilities on the different processing orders. and K is the index defined above;

(2) {.\(k,.. r. K. 8}},where {.\(.)} is the set of exponential processing rates (.\ ~ 0).
which depend on (i) 8 = +1 or -1. i.e., whether the pair consists of matching or
mismatching elements and, (ii) K. i.e.. the processing order given in terms of the
serial positions with kr denoting the serial position of the element processed at stage r.

As an example of serial parameters. P(3) would be the probability that the third
out of the NI possible processing orders is taken. The parameter .\(6.5.20, -1)
specifies a processing rate for the stimulus pair with serial position index 6. processed
5th in the 20th order out of the possible N! orders and they mismatch. There are
N! - 1 unconstrained processing order probabilities and N(N)! processing rate
parameters for each of the two match possibilities. 8 = ::I:1. This formulation therefore
results in a total of N! - 1 + 2N(N!) parameters under nondegenerate conditions

for the serial model. Although K is obviously sufficient to specify r. the inclusion of r
in .\(.) will facilitate later theoretical remarks.

In general parallel processing models. we allow for the possibility that as various
stimulus objects are completed. the rates of the remaining stimuli may change. Recall
that the term "stage" refers to how many comparisons have been completed; thus.
stage 1 means no comparisons have been finished, stage 2 that one comparison has
been completed and so on.

DEFINITION15. A parallel-exponential model (PEM) for matching experiments
is a parallel processing model characterized by a set of exponential rates that can
depend on specific comparisons (+ or - match) and on the past order of completions
up to any specified stage on a given trial.

Just as in the serial model, the rates of the parallel model can depend on processing
order. However; unlike the serial model, the. parallel parameters cannot depend on

that part of the order that comes at later stages. As noted above, this follows from a
parallel model being basically evolutionary with the probability of a particular order
depending on the relative magnitudes of the processing rates at the successive stages



--

20 JAMES T. TOWNSEND

whi1.ea serial model's processing rates on a particular pair cal) be selected with regard
to what happens after this pair is processed as well. This historical constraint on
parallel processing is illustrated in the next definition.

DEFINITION16. The parallel set of parameters is given by {v(hr , r, m(r), 8)}, where
hr denotes the serial position of a pair in 81 X 82 that has not completed processing
by the beginning of stage r; r denotes the processing stage, I ~ r ~ N; m(r) is an
ordered list of the serial positions of the pairs completed in stages I through stage
r - I, and 8 is as before.

As an examplev(7, 2, (5), -I) is the processi~grate for the pair with serial position
7 at stage 2 when the pair with serial position 5 was completed in stage I and the pair 7
mismatches. That is m(2) = (5) since the complete processing history prior to stage 2

. consists of the pair processed in stage I which is indexed by serial position 5 for our
example.

By convention we let m(1) = {0} to denote that prior to stalre I there is only one
(null) processing history. Then m(l) has N possible members, m(2) has N(N - I)
possible members, and m(r) has N(N - I) ... (N - r + I) possible members. At
stage r there are N - r + 1 unprocessed elements and these elements can take any of

N(N - 1) ... (N - r + 1) processing rates depending on the serial positions of the
pairs .already processed, their order, as well as whether the unfinished pairs consist
of matching or mismatching elements.

Note that although an enumeration of the total set of possible processing orders K
was employed in the serial parameter definition, an ordering of the element pairs by
serial position, m(r), is again used in the parallel definition. This is because it is an aid
in some of the proofs below to retain the order itself in the parallel case. In fact, it
would be technically correct to write m(r) = O(r) where 0 is as before, but a specializa-
tion of notation is necessary later that is best kept separate from the earlier more
general case.

It may be seen that the total possible number of parameters for the parallel model
is 2NI "£.::01 (IJjl). This is a compact way of writing 2[(N) + (N) (N - 1) + ... +
(N) (N - I) ... 2 + (N) (N - 1) ... 2 . I]. The "2" simply comes from the doubling
of the number of rate parameters due to the +, - match distinction. Inside the
brackets, at stage I there are N parameters for each of the N pairs. At stage 2, for each
of the possible N pairs there are N - I different' possible pairs that could have been
completed at stage 1 and hence there is a set of parameters at stage 2 numbering
N(N - 1). This continues: The set of possible histories increases as the stage number
gets larger up until at the last stage (N - 1)1historiesare possiblefor eachof the N
potential last elements giving NI parameters at the last stage. Note that order of the
completions in the histories is retained as a possible source of rate differences. Note
again that the N serial rate parameters can depend on the entire set of Nt orders as
contrasted with the parallel model's historical constraints.

. , ,--'._~ ,-
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We now are in a position to derive a unique description of the stochastic processes
that result from Definitions 13-16. The device we shall employ exhibits less com-
plexity of notation than would specification of the density functions. The method is
that of joint characteristic functions.4 The "true" characteristic function for the
present models would involve summing up our joint characteristic functions. The set
of j6int characteristic functions is actually a more precise description of the stochastic
process than is the sum of the members of this set, since each joint characteristic
function specifies a certain order of processing, and together the whole set uniquely
determines the stochastic process. Thus, our joint characteristic functions involve a
Fourier transform of the time aspect of the process but also include the transformed
probability measure on the particular processing order.

It is necessary at this point to develop a slightly more detailed notation for the
vector of pairs associated with K in order to indicate individual pairs and their com-
pletion position. We let k,(K) be the serial position of the pair that completes proces-
sing rth when the total order is given by K = (kl(K), k2(K),..., kN(K». Thus, when
useful we may, for example. write P(K) = P(kl(K), k2(K) , kN_1(K), kN(K».

The terms T(k" r, K, ~), T(k, ,r. m(r).~) refer to the serial and parallel inter-
completion time random variables from the (r - l)th to the rth pair, respectively.
It is to be understood that (k, r, K) here corresponds in a I-I fashion to serial position
k, in the order K. The terms s(k, , r, K,~) and s(k" r, m(r),~) are the respective
Fourier transform variables of the pre,vious two terms. Since the first two
(T(k, , r, K. ~), T(k, , r, m(r).~» refer to the same variable in the time domain and the
latter two (s(k, ,r, K, ~), s(k" r, mer), ~» refer to the same variable in the transform
domain we see that it is possible to set

T(k, , r, K,~) = T(k" r, mer),~),

s(k, ,r, K, ~) = s(k, , r, mer).~),

when equivalence mappings are established between serial and parallel models. It will
facilitate exposition to use the same "time" (t or T) and dummy variable (s) terms for
the parallel and serial expressions.

In order to further simplify the still complex notation, we will employ the convention
of writing t(k, ,r, K, 8) = t, ,s(k, , r, K,~) = s, , under the integral sign, but the full
notation, (k, , r, K), is always implied, and can be immediately retrieved by way of the
other terms in the characteristic function.

With the foregoing considerations in mind, we can write the appropriate joint
characteristic function for the serial model; this is the joint expectation of the terms

· Where the moment generating function is defined, as is the case here with exponential
intercompletion times. it serves as well as the characteristic function. In fact. by dropping the
"i = (-1)1/'" in the characteristic function, the moment generating function is obtained in
th(. following characteristic function expressions.

---
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exp(is,T,), where i = (-I )1/2,r = I, 2,..., N and the prob;1bility function includes
the probability for the order of processing. It will shorten the exponential terms if we
use e(x) rather than the usual exp(x) to stand for e".

L~MA I. If a model of a processingsystem in a matching experiment is .rerial-
exponential,then thejoint characteristicfunction <p(,1(s = serial)for a specifiedorderK,
of the intercompletion times, is given by

<p('I(T(kl' I, K, 8), T(k2, 2, K, 8),..., T(kN' N, k, 8»

= P(K) . .\(kl , I, K, 8). . .\(k2, 2,K. 8)
.\(kI , I, K, 8) - 'SI .\(k2, 2, K, 8) - 'S2

.\(kN, N, K, 8)
.\(kN,N, K, 8)- iSN .

Proof. Following directly from the above definitions and that of joint characteristic
functions we have

<p(,) = E('I[e(is(kI' I, K, 8) T(kl, I, K, 8» e(is(k2' 2, K, 8) T(k2' 2, K, 8». ...

. e(is(kN, N, K,.8) T(hN' N, K, 8))]

= P(K) f'" f'" ...f.'" {[.\(hI, I, K, 8) e(-.\(kI, I, K, 8) tI) e(isItI)]}Jo Jo 0 .
. [.\(k2 ,2, K, 8) e(-.\(k2 ,2, K, 8) t2) e(is2t2)] . ...
. [.\(kN, N, K, 8) e(-.\(hN, N, K, 8) e(isNtN)]dtI dt2 ...dtN .

Clearly, the separate terms involving the ti may be segregated into the product of the
integrals,

<p(,1= P(K) C .\(hl , I, K, 8) e(-.\(kI , I, K, 8) tI) e(isItI) dtl'0

. fa>.\(k2, 2, K, 8) e(-.\(~ , 2, K, 8) Iz) e(is212)dl2 . ...o

.fa> .\(kN, N, K, 8) e(-.\(hN, N, K, 8) IN) e(isNIN) diN,o

where .\(h" r, K, 8) e(-.\(h" r, K, 8) I,) dl, (r = I,..., N) is the density function for
the rth intercompletion time, and these may be integrated to yield the proposed
result. Q.E.D.

The next lemma gives an analogous result for the parallel models.
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LEMMA2. If a model of an element processing system in a matching experiment is
parallel-e:cponential then the joint characteristic furn:tion for a specified history m(N + I)
of the intercompletion times, 4>IP)(p = parallel) isgiven by

.pIP)(T(k}, I, m(I), 8), T(k2, 2,-m(2), 8),..., T(kN' N, m(N), 8))

v(k) , I, m(I), 8)
= ~N v(h)I ' I, m(I), 8) - is}

.£..;-1

v(k2 , 2, m(2), 8) -
~N V(h2 1 ' 2, m(2), 8) - iS2L..;_2

v(hN,N' N, m(N), 8)
v(hN,N' N, m(N), 8) - isN

where hr; denotes the serial position of one of the N - r + I elementsasyet uncompleted
at the beginning of stage r, and of cQurse,hN.N = kN .

Proof. The density fo-r each intercompletion time is slightly more complicated
here. This quantity is, for the rth to be finished,

v(kr, r, m(r), 8) e(-v(kr, r, m(r), 8) tr) . e (-tr I. v(hr;, r, m(r), 8))dtr;
;-r+}

the first two terms are the typical exponential probability density elements and the
third is the probability that none of the other (remaining) stimulus pairs completes
processing during the interval tr , which begins at time t = I} + t2 ... + tr_} .

The expectation of the product of all such appropriate terms is

4>IP) = EIP)[e(is(k},I, m(I), 8) T(k}, I, m(I), 8)) e(is(k2'2, m(2), 8) T(k2' 2, m(2),8). ...

. e(is(kN' N, m(N), 8) T(kN' N, m(N), 8»]

= fa>{' ... fa> I[v(kl> I, m(l), 8) e(-v(k}, I, m(I), 0) t})o 0 0 I

. [v(k2, 2, m(2), 8) e(-V(k2' 2, m(2), 0) t2) e (-t2 £v(h2/, 2, m(2), 8)))-3

--- -- ---
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Again, we may segregate the terms for the I;'S producing a product of integrals

,pljJ) = f' v(kl' I, m(I), 8) e(-v(k]. I, m(I), 8) tl) e(-t1 £V(hll' I, m(I), 8»)o ~2

. e(isltl) dt1r ~-(k2 , 2. m(2), 8) e( -V(k2 , 2, m(2), 8) t2)o

. e (-t2 £v(h2" 2, m(2), 0»)e(is2t2) dt2 . ...
1-3 .

. {' v(k"" .Y,m(N), 8) e(-V(kN' N, m(N), 8) tN) e(isNtN)dtN.o

Integration of these obtain the joint characteristic function indicated in the statement
of the lemma. Q.E.D.

The two preceding lemmas exhibit the basic canonical forms of the pertinent
characteristic functions. They can also be proven employing more explicitly the
fact that the succeeding intercompletion times are independent in the present models.
That fact means that the joint characteristic function can be written as the product
of the joint characteristic functions of the separate intercompletion times and this
leads 'to the above results. Lemmas I, 2 were proven more directly in order to expose
the structure of the probability functions and their relationships. We should observe
that for any fixed experimental arrangement of duplicated stimuli in 81 and 82 there
will be N! different such joint characteristic functions corresponding to the various N!
completion orders. Alternation of the stimulus serial position locations of members of
identical pairs in 81 and/or 82 defines a new set of Nt characteristic functions. This
new set of characteristic functions may differ from the old since matching and mis-
matching pairs, upon which the rates depend, may be located in new serial positions.

In the example of Fig. I, the serial joint characteristic function is thus found to be

,pW(T(k1, I, (a, b), 8), T(k2' 2, <a,b), 8»

= PC b\) "(kl , I, <a,b), 0)
~p, / "(k1, I, (a, b), 8) - is)

"(k2, 2, <a, b), 8)
"(k2, 2, <a, b), 8) - iS2

and that for the corresponding parallel glse is

,pIPJ(T(k1,I, {0}, 8), T(k2' 2, a, 8»

v(k1,1,{0},8)
V(kl' 1,{0}, 8) + v(h12'I, {0}, 8) - iS1

V(k2' 2, a, 8),
V(k2' 2, a,8) - is!

where, of course, hl2 =."k2 specifying the same pair of elements. Note that m(l) = {0}
since nothing has been processed at stage I and hence no history is yet available, but
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at stage 2 in this example, 711(2)= h) since the pair specified by serial position k]
was completed at the end of stage I. Thus, at stage 2 the rate for the element pair

ak = ak may be changed from V(k2' I, {0}, 0) to V(k2' 2, a, 0) and they, are not212
necessarily equal. The parallel and serial joint characteristic functions for the other
orders can be found in a similar manner.

4. THEOREMS ON EQUIVALENCE AND DIVERSITY

Equivalence will be investigated for a sithple matching type of experiment
(Definition 2),' in particular, one that includes two types of trials, the first being with
no S2 stimulus elements identical to any S] stimulus elements (trial type 1']) and the
second being with exactly one of the S2 stimulus elements identical to one of the S]
stimulus objects (trial type 1'2)'

Theorem I considers the context of T] trials, the results are equivalent to those
found from considering (only) trials where all the stimulus pairs match. Theorem IA
states sufficient conditions to ensure that total equivalence does not hold, that is, that at
least distribution diversity does hold. Basically, Theorem IA says that the serial mudel's
rate parameters can differ in a way depending on order that the parallel model's rate
parameters cannot, in order for the parallel and serial models to be different. Theorem
I A works as long as either 11]> I, n2 > I or both.

The second part of Theorem I (IB) states that the negation of the condition in IA
implies total equivalence. Thus, the condition is necessary and sufficient for total
equivalence not to hold.

THEOREMIA. On T] trials if P(K) =1=0 for all Kin SEM then the serial exponential
model (SEM) and the parallel exponential model (PEM) are distribution diverse and
therefore not totally equi'l:alent1/ (I) there exist at least two orders K] , K2 (or m](N + 1),
m2(1\T+ 1» in which (2) there is at least one stage r such that the orderings (or history)

up lintil r are the same in K], K2 and such that '\(k~]),r, Ku -I) =1='\(k~2),r, K2' -I),
where k~]) and li~2)may be the same but are not necessariZv,and are not processed before
r in K] , K2' but each is assumed to be completed at the end of stage r.

I B. 1f for all Ai' Kj; for all r, and for all k~t), k~j),'\(k~i),r, Ki' -I) = '\(k~;),r,
Kj , -1), where K; , K; are the .wme up until stage r, then SEM and PEM are totally
equh'alent.

Proof. A. Assume there exist Kl' K2, and r such that '\(k~]), r, K1 , -I) =1=
'\(k~2),r, K2, -I); then note that at stage r the PEM survivor function (1 minus
the cumulative distribution function) is givcn for 1\.] . K2' for the intercompletion
time from r - J to r, conditionalizcd on order, hy FpBM(tr, Ki) .= e(-tr 2:.;:r+l
v(hri ,j, m;(r). -I», i _.. i, 2, and hence FpEM(tr,K]) ,~.FpEM(tr, K2) by virtue of
m](r) = 1II2(r)and tht: hj~torica I const raint on parallel processing, irrespective of the

--
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specific pair indexed by serial positions k~I).k~21.Therefore it holds for the pairs
inde"xed by k~l) and k~2'. On the other hand. the corresponding quantities for SEM
are given by FSEM(tr, KI) = e( -A(k~I', r, Kt, -I) tr) :;a!:FSEM(tr,K2) = e(_A(k~2', r,
K2 , -I) tr) by hypothesis that the A'Sare unequal. Thus: even if a mapping is other-
wise possible, the unequal Ahypothesis precludes total equivalence and yields distribu-
tion "I1iversity. .

Proof. B. Part B is much more complex since a mapping must be given between
the parameter spaces of PEM and SEM that yields total equivalence. Assume that
hypothesis B is true, that is, for all Ki , K; , and tor all r, such that mi(r) == m;(r) up
until stage r, A(k~il.r, Ki' -I) = A(k:il, r, Ki, -I). Then there exists a homeo-
morphic mapping G, carrying the space of PEM parameters onto the space of SEM
parameters and vice versa. It is well known that this will guarantee equivalent proba-

. bility measures for the related processes.
First consider the two pertinent parameter spaces. Each space includes a number of

orthogonal dimensions equal to the number of independent param'eters. In the case of
PEM, there are thus N! 'L':..~t(I Ij!) dimensions. SEM now, (under our hypothetical
constraint) also includes the same number: N! - I probabilities, and one Afor stage 1,
N for stage 2, N(N - I) for stage 3, and so on down to N(N - I) ...2 A'S at stage
m(N). This results in a total of N! -1 +['L':..~2n~-o(N -i) + I] = 'L::otn:-o(N - i)
which can be written as N! 'L~_~t(Ifj!) which is the same number of parameters as
that for PEM. The serial probabilities {P} 'are, of course, constrained to the open
interval (0, I) by hypothesis.

Now let G be expressed as the proposed PEM --+SEM mapping: For any K, set

P(K) = P[kt(K), k2(K),..., kN_t(K), kN(K)]

= P[kl(K)] . P[k2(K) I kl(K)] ... P[kN(K) I kt(K), kz(K) , kN_t(K)]
and let

P[kt(K)]
N

= v(kt, 1,m(I), -1)/I. v(ht;, 1,m(I), -I),;-1
P[k2(K) I ~(K)]

N

= V(k2' 2, m(2), - I)/I. V(h2i'2, m(2), -I),;-2

P[kN_t(K) I kt(K), kN_2(K)]
v(kN_t, N - I, m(N - I), -I)

v(hN_t.N_t, N - I, m(N - I), -I) + v(hN_t.N, N - 1,m(N - 1), -1) ,

P[kN(K) I kt(K),..., kN_t(K)]

V(kN'N, m(N), -I) = 1;
V(kN'N, m(N), -1)

-----. ... ....-..- - ... -.-.-
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where, of course, hii = hi' Further, set

'\(kl , I, K, -I)

N

= L V(hli' 1, m(I), -I),
j~l

'\(k2' 2, K, -I)

N

= L v(h2J,2, m(2),-1).
i-2

>'(kN_l' N - 1, K, -1)

= v(hN_1.N_1,N - 1, m(N - I), -1) + V(hN_l.N'N -'1, m(N -1), -1),

>'(kN'N, K, -1)

= v(hN.N, N, m(N), -1),

for all k, processed at stages r = 1,N.
Performingthis foreveryK yieldsthePEM~ SEM mapping. It may be ascertained

that this mapping produces "P's" that sum to 1 by noting that all the denominators
for each total joint probability giving the K's are equal; factoring these out and adding
the numerators over the K's yields the product of sums of v's found in the denominator.

At each stage r, there are N(N - I) ... (N - r + 2) histories m(r), which we shall
designate mer,1), mer,2),..., mer,n;:: (N - i». For each one of these histories, there
is a set of N - r + 1 pairs yet to be processed which we call her, 1), her, 2),...,
her, N - r + I). Corresponding to these are the probabilities P[h(r, 1) Im(r,j)],
P[h(r, 2) Im(r,j)],...,P[h(r,N - r + 1), Im(r,j)] for each j = 1,2,..., n;:~ (N - i),
for r > 1;j = 1 for r = I~These probabilitie>;correspond, of course, to a particular
sequence of pairs so that the product

What we have just done is to show how the (serial) probability of a given order K,
can be decomposed into a product of terms written via the historical sequence m(I,A),
m(2,j2)"'" m(N,jN)' The term P(h(r, iT) Im(r,j» gives the probability that the pair
with serial position h(r, ir) is processed at stage r, conditioned on the specific previous
history m(r,j). This writing of serial probabilities in terms of some parallel structured
terms, the m(r,j), is convenient since the specification of parallel parameters depended
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on the developing history from the start and secondly, it allows a natural language
of serial and parallel expressions in G-I, th(' prototypical REM PEM mapping:

v(h(l, 1), m(l, I), -I)

= P(h(l, I) I m(l, I» "(h(J, I), m(I, I), -I),
,

v(h(l, 2), m(l, 1), -1)

= P(h(l, 2) I m(l, I» "(h(l, I), m(l, J), -I),

v(h(l, N), m(l, I), -I)

= P(h(I, IV) I m(l, 1» "(h(I, I), m(I, I), -I),

v(h(r, 1), m(r, I), -1)

= P(h(r, 1) m(r, 1» "(h(r, I), m(r, 1), -J),

v(h(r, N - r + I). m(r, I), -I)

= P(h(r, N -- r + 1) I m(r, I» '\(h(r, I), m(r, I), -I),

I' (h(r, N - r ~I), m {." n (S -- j»)' . -I )\ \ &-0

= P(h(r. N -- r + I) I m (r, i]2 (N - i»))

." (h(r, I), m (r, 1)2(N - i»), -I),

v (h(N, I), m (N, IT (!Y- i»). -,1)

= P(h(N, I) I m (N, ir (V -- i»), -1) "(!'(S, I) 1m (N, ij2 (N-i»), -I).

Note that we have suppo!'cd, say.

;\ (h(j, N - j + 1), m (.i, n (n - i)), ---I) = "(h(j, 1),m (j, n (n - i»), -I). 01 O.

as is required hy hypothesis. The stage was l'xplicitly given by the argument of
h, In, etc., so was otherwise omittt:d from its lI!'ual po!'ition in 1','\.

.. _._.-
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Next let V., E1:, Vp E 1: be the vectors with N! L~:~1 (Iii!) places which are con-

tained in the serial (1:) or parallel (n) parameter spaces, respectively. The assumption
that the v's are in (0, +00), the p's in (0, I), ~'s in (0, +00), establishes the nature of
the dimensions. The parallel space given by n = Xv and the serial by 1: =
(xp) X (xA) are of the same dimension. Thus, a homeomorphism is at least con-
ceivable, it not being possible to provide homeomorphisms between arbitrary, or even
Euclidian, spaces of arbitrary dimensions (Hurewicz & Wallman, 1948). We now
prove that G is a homeomorphism.

(a) G is I - I. Observation of G and G-;:1will indicate that each parameter
vector is a single valued vector function of the other for both G and G-I and therefore
Gisl-I.

(b) Next it is obvious that for every point in the spaces n, 1: there is a corres-
ponding point in the other space via G; therefore G is onto. This leaves the proposition
that G is bicontinuous to be proved.

(c) This proposition will be proved jf it can be shown that each coordinate in
nand 1: is a continuous function of the coordinates in the other space, since such a
relationship implies overall continuity. But this follows immediately from the form
of these functions, i.e., these functions are of the form

v =p~,

p = v{1:v;,

A= 1:vi,

and are undoubtedly continuous, with respect to the Euclidean metric, for example,
in the (open) domains of the respective arguments. Q.E.D.

We will withhold discussion of most implications of this theorem, until the other
type of trial is considered and the question of equivalence within the context of the
whole simple matching paradigm can be treated. However, it may be observed that
Theorem I A implies that Amay differ for differ~nt pairs at stage r and produce diversity
with PEM or, more significantly, may differ for the same pair with the same ordering
prior to r and a different ordering thereafter and still produce diversity_

On trials when exactly one of the 81 stimulus elements (say 0*) is the same as one
of the 82 stimulus elements (01*= O2* = 0*,a T2type of trial),consideras prototype

. the order when 01* is in 81 position u, and in 82 is in position VI- Assume further that
this pair (01*,02*) with serial position h*+ is processed r1th and designate r2 > r1 as
the processing position of a specific pair that includes 01* as its 81 member and another
different stimulus from 82 , the serial position of the latter pair to be called h*-. We
assume for later reference (Theorem 3) that the second, different, stimulus is in
position V2 in 82 . It will be helpful to write the joint characteristic functions for this
type of trial; these formulas follow directly from Lemmas I and 2.

---
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For the serial model the joint characteristic function is

c/>('J(1'(~,I, K. -I) T{h*-. r}. K. +1),..., T(h*-, r2,K. -I),..., T(kN' N, K, -I»

= P(K) A{k}, I, K, -I). ... :~*+, r}, K. +1) .A(k} , I, K, -I) - IS} A{h, r}, K, +1) - ISrl

A(h*-,r2,K,-I) ... A{kN,N.K,-I)
A(h*-, r2, K, -I) - isr. A(kN' N, K, -I) - is-;' .

It is useful for the parallel joint characteristic f~nction to separate at each stage the
+ part from the others. Then we may express

q,IPI(1'{k},I, K, -I),..., 1'(h*+,r}, K, +1), T(h*-, r2.K. -I), 1'(kN,N, K, -I»

v(k} , I, m(I), -I)
~1! * v(hi;' I, m(I), -I) + v(h*+,m(I), +1) - is]
"'-'-}'''/I'''' +

v{h*+,r}, m{r}), +1)
"LN * v(hrl;, r}, mer}), -I) + v(h*+, r} , mer}), +1) - iSrl

,-r1+}'"'I''''' +

v(h*-, r2, m(r2), - I)
"LN *_,,(hr,;, r2, m(r2), - I) + ,,(h*-, r2, m(r2), - I) - isr.

,-r..",.,,,,, .
V(kN' N, meN), - I)

V(kN' N, meN), -I) - iSN

Theorem 2 states that differential processing speeds for + as opposed to ,.--matches
makes distribution diversity a certainty; now restricting our attention to the context
of T 2 trials. As before, it is postulated that no order K exists such that P(K) = O.

THEOREM2. If + comparisonsareprocessedat differentrates than are - comparisons
then SEM and PEM are distribution diverse with respect to 1'2 trials.

Proof. Consider without loss of generality the alternative order K' which permutes
the processing positions of h*+ and h*- but which leaves the history up until r} , (m(r}»,
unchanged. Then if total equivalence were to hold, it must be the case that

N

A(h*+,r}, K, +1) = L v(hr1;,r}, mer}),- I) + v(h*+, r}, mer}), +1)
;-r1+}

= A(h*-, r}, K', -I).

But, A(h*+,r}, K, +1) =1=A(h*-, r}, K', -I) by hypothesis;. therefore SEM and
PEM are distribution diverse. Q.E.D.

Note that the sum of v's in the proof is the same for K and K' since the ordering up
until T},given by mer})is the same for K, K'. Note also, that Theorem 2 depends on a
change in order ,after stage r as did Theorem IA, but now even if the A'Sdo not differ
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according to serial position or the order after stage r they may because of +, -
processing differences and thereby produce diversity.

An obvious corollary follows.

COROLLARY.If the rates.do not differ for +, - comparisonsand the ;\'s otherwise
satisfy the constraint of Theorem I B, SEM and PEM are totally equivalent on Tz trials.

Theorem 3 also obtains a result of distribution diversity, again following from
different processing rates on + and - comparisons and again involving the context
of Tz trials. However, in this caseit is PEM that i~the more general. Basically,Theorem
3 uses the fact that the serial (SEM) probability of selecting a given element (stimulus
pair) with specified positions in 81 and 8z, for a certain processing position, cannot
depend on whether the stimuli in that pair match or do not match. On the other hand,
the + and - rates differ in the parallel model (as in the serial), and processing order
in parallel processing is entirely dependent on rates of processing. It therefore follows
that the parallel probability of a pair with specified 81 and 8z positions being completed
at a given stage will depend on whether the pair matches or does not.

THEOREM3. If + comparisons are processed at different rates than - comparisons,
then when Tz trials with different placement of 0* in 81 and 8z are considered, SEM and
PEM are distribution diverse, if P[m(N + I)] is different for the distinct placements.

Proof. Hold K constant and permute 0* in 81 and 8z such that 01* is still in position
u, but the second, different stimulus is now in position VI , and in positiQn Vzwe place
oz* (= 01*),

Since the order K on serial positions is unchanged, according to SEM, P(K) should
be invariant with respect to what is in the stimulus positions of 81 and 8z. In particular,
P(h:+ Ihi, hz ,..., h, ) = P(h:- I hi' hz ,..., h, ), where h:+ is the serial position1 1-1 1 1-1 1

of the matching pair (01* at u and oz* at VI) and h:- is that of a mismatching pair (01*,
at u and a different mismatching stimulus at VI)' Thus, h:+ and h:- represent the same, ,
stimulus positions in 81 and 8z (and therefore the same pairwise serial position, h:+ =,
h:-), but the first pair matches and the second mismatches.,

These facts together with Theorem I imply that for total equivalence to hold we
must simultaneously satisfy

* .
P(h,,+ I hi , hz ".., hr,_,)

v(h*+, r1, m(r1), +1)

~N V(h,,1' r1, m(r1), -I) + v(h*+, r1, m(r1), +1)",",j-',+1
*

= P(h.,- I k1 , kz ,..., h,,_,)
_ v(h*-,r1, m(r1},-I}
- ~N v(h,,1' r1 , m(r1}, -I} + v(h*-, r1 , m(r1), -If +v(1*+, rz , m(rz}, + I .",",j-.,+1

1...,



- -- --

32 JAMES T. TOWNSEND

on the other hand, if there are: unequal, PEM and SEM are distribution diverse.
Q.E.D.

COROLLARY.If the processingrates do not differfor + and - comparisons and the
hypothesis of Theorem 1B holds, then PEM and SEM are totally equivalent even across
triafs with different (experimental) placement of the "same" stimulus.

Proof. The proof fol\ows immediately from the homeomorphism employed in
Theorem IB. Q.E.D.

Yet another facet of diversity is discovered when T} trials are compared with Tz
trials; that is, in the context of simple matching experiments. More specifically, if a
certain mismatching pair is processed at some stage then its rate may be presumed to
be the same in a serial system whether the other stimulus pairs match or not. But in a
parallel system, the intercompletion rate of that stage quite obviously depends on the
composition of the other uncompleted pairs. This type of diversity is captured in
Theorem 4. Here, as in Theorem 3, it is the parallel model that is the more general.

It is assumed that the 8} stimuli are identical in the T} and Tz stimulus sets to be
considered, but that exactly one 8z stimulus is removed from the T} set and replaced
with a stimulus that matches exactly one of the 8} stimuli. Arbitrarily select a - pair
that is found in both the T} and Tz sets with serial position h*-. .

THEOREM4.' If + comparisonsare processedat different rates than - comparisons,
then SEM and PEM are distribution diverse with respect to simple matching 'experiments.

Proof. Fix the order for both the T} and Tz trials. Refer to the pairs on the Tz trial
containing Oz* (=o} *) as their 8z member, as "b" pairs and those not containing Oz*
as "a" pairs. The Tl trial contains only "a" elements. Now, designate the serial
position of "a" tuples as hB and those of "b" tuples as hb and suppose an "a" pair
(say a*-) completed at stage r has serial position h*~.

The SEM exponential intercompletion time survivor function for element pair a*-
at stage r when conditionalized on order is e[-,\( h *-, r, K, -1) t r] and this is identical
on the T} and Tz trials. Note that this expression is independent of the composition
of the other element pairs, in particular, the uncompleted pairs. On the other hand,
the intercompletion time survivor function ofPEM on a*- at stage r, again condition-
alized on order, is

e I-
[v(h*-, r, mer), -1) +.f v(h,j, r, mer), -I) ]tJ! 1-'+1 \

for 1'} trials,

and

e j- [
v(h*-, r, mer),-I) + L .'("r(a),r, mer),-1) + L v(h,(b), r, mer), +1) ]t). (h.!h...~._, (hbl I
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for Tz trials. As indicated, the Tl and Tz expressions need not be equal; t~erefore,
" cannot be made identical to both simultaneously and PEM and SEM are distribution
diverse in this circumstance. Q.E.D.

COROLLARY.If the processing rates do not differ for + and - comparisons and the
hypdthesisof Theorem IB holds,then PEM and SEM are totally equivalentwith respect
to simplematchingexperiments.

Potential testability (which requires "diversity" but also observability) between
SEM and PEM basc;d on the above theorems then necessitates selecting materials
and/or aspects of the processing mechanisms that promote:

(a) Different rates on different serial positions and different possible "pathways"
through the (T1) pairs (Theorem 1).

(b) Different rates on +, - comparisons and different possible "pathways"
through the (Tz) pairs (Theorem 2). .

(c) Same as (b) but also ensure that sets of experimental stirilUli for different
trials include pairs where the duplicated stimulus appears in different stimulus posi-
tions (Theorem 3).

(d) Different rates on +, - comparisons and use of simple matching experi-
ments (Theorem 4).

In concluding discussion of the above theorems, we note that they were stated in
terms of parallel or serial processing of pairs of stimuli. The theorems are directly
applicable to .any set of elements that can be characterized with logical structure
similar to that for pairs of stimuli selected from two finite sets.

Another possibility of producing distribution diversity, apart from the above
theorems lies in letting some processing orders K possess .zero probability of ocCQr-
rence; in the extreme, letting one path occur with probability 1. Recall that P(K) # 0
for all K was assumed as a postulate for the ab~ve developments. The idea here would
be that when, for example, P(K) = I for serial K in SEM (and clearly when based on
other distributions than the exponential as well), no PEM can be totally equivalent
to it, since to do so violates the part of PEM definition requiring nonzero rates at all
times for uncompleted pairs. As can be seen (with minor extrapolation) from the
mapping in Theorem IB, PEM can approximate SEM at these cases to an arbitrarily
close degree by letting all but one v be arbitrarily close to zero at any stage, assuming
the other hypotheses for total equivalence are satisfied. In a negative sense, this
means that a parallel model can act very much like a single-processing-order serial
model. In a positive sense, it means that if a parallel model is the correct model, it is
nevertheless evolving into or acting like a serial model, since when all the v's but one
are zero at any given stage, it is a serial model.
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Before proceeding it should be pointed out that it is possible to generalize these
results to situations where differences between particular stimuli and therefore stimulus
comparison rates, may be present (e.g., it may take longer to compare I and] than I
and 0), and be of potential aid in parallel-serial testability. A related line of generaliza-
tion is to situations where some of the stimuli are of one category (say numbers) and
the others are of a different category (e.g., letters) and the two categories are processed
at different rates. It appears that anything that enhances different processing rates for
different pairs will tend to increase the chances of distribution diversity of the sort
shown above for different stimulus positions, and.+ and - comparisons.

5. A SIMPLE MATCHING DESIGN TO ILLUSTRATE MODELS AND THEOREMS

Although the above distribution diversity developments suggest some indication
of where testability of PEM and SEM may lie, they do not prove that such testability
exists. The problem that arises in attempted utilization of the distribution diversity
results, consists in the subtlety of the manifestations in data of PEM and SEM struc-
tural differences. Not only is there the usual possibility of a fairly realistic model
possessing more parameters than an experiment possesses degrees of frc:edom, but
the statistics typically observable may not reveal distinctive differences between
parallel and serial processing.

It is pertinent to consider a simple special case of SEM and PEM in conjunction
with a typical type of experiment in order to .

(1) realize certain intuitions and clarify PEM-SEM structure that may have
been partially obscured by the generality of the above treatment,

(2) indicate how PEM, SEM differences may become submerged or "averaged
out" in traditional statistics, and

(3) suggest statistics that do test SEM-PEM models, when and if they can be
obtained.

Following that, a more complex type of experimental design that yields SEM-PEM
testability will be examined.

Consider a simple matching experiment where the basic types of trials are (I) T1 :
Stimulus 01absent from 8", (2) T" : Stimulus 01present in-position 1 in 8" , (3) Ts.:
Stimulus 01present in position 2 in 8" ; where, for example, 01, 0" , 03might be the
randomly selected letters c, v, 1. The potential stimulus configurations are determined
by the serial positi<!nsof the 8" elements, since it is assumed the serial position of 01
in 81 is fixed. The 8" configurations, after ordering by serial position, are of the form
(01 ,0,,), (0",°1), and (0" ,°3). Hence, the serial position index of a pair is hr = 1
if the 8" element of a pair not yet finished at stage r is from the first serial position

-.
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and hr = 2 if it is from the second. Of course, we may still use hr = kr to denote the
element actually completed at the end of stage r. Note that 81 = 01 .

Recall that the serial rates are of the form '\(pair-serial position, stage, order, type
of comparison). Thus, the 2 in '\(2, " " .) gives the processing rate of the pair made
up of 01 and the second (right-hand) member of 82 which might be 01 , 02 , 03 .How-
ever, the 2 (in ,\(0,2, " .» says that the stage is number 2. and the] (in '\(', " I, .»
means that the order of processing is number 1 (i.e., compare 01 with the leftmost
member of 82 then do the rightmost). This, plus '\(', " " +1) tell us that this parti-
cular ,\ applies to an ordering of the 8i elements, 82: (°2, °1) or (°3, °1) when 01
and 01are being compared in stage 2 after 01and 02 tor 03)have already been compared
in stage 1. In conjunction with our previous definitions, this results in the parameter
space determined by the following set of parameters for SEM with n1 = ], n2 = 2.

(p, ,\(I, ], I, + I), ,\(I, I, I, -I), '\(2, 2, ], +]), '\(2, 2, I, -]),

'\(1,2,2, +1), ,\(], 2, 2, -I), '\(2, 1,2, +]), '\(2,.],2, -I»,

where p is the probability of comparing the first (82) position with the early stimulus
first, and the ,\'s are, of course, the rates for the two pairs at the various stages and
duplicative possibilities.

This formulation gives a total of nine parameters which can be verified with the
earlier formula

In an analogous manner, the parameter space for PEM is generated by

. (v(I, I, (0, 0), +1), v(1,], (0, 0), -I), v(2,2, 0, 0), +]), v(2,2, (I, 0), -I),

v(1, 2, (2, 0), +1), v(I, 2, (2,0), -I), v(2, I, (0, 0), +1), v(2, ],(0, 0), -]»,

the rate parameters which .govern the behavio.r of PEM. Now, (0, 0) = m(I), the
null history before the first stage is over and (h1, 0) = m(2), where h1 = 1,2 is
the serial position of the pair (and thus the serial position of the 82 element) that is
completed at the end of stage l. Of course, the parallel-serial'correspondence of order
of processing is 0, 2) = 1 and (2, ]) = 2, although to be sure, the parallel order is
determined in this case when the first pair is completed. The other entries are as in
the SEM case. The formula 2(n1 0~)! L;~:.-1 (Ifj!) = 2 . (I 02)1 (] + ]) = 8 yields
the correct number of parameters.

In this specific situation, the parameter notation can be simplified. In fact, we can
write '\ij(') to be the SEM rate for hi = ], 2 at stagej (j = I, 2) for a (.) comparison
(. = +, -). Note that K would be redundant here. The parameter vik) is defined
in exactly the same way.

-- - --- ----



- ----

36 JAMES T. TOWNSEND

There are six joint characteristic functions for the intercompletion times; two each
for the three trial types above. Each characteristic function will be written as con-
ditionalized on trial type and placement of the duplicated stimulus in 82, Thus,
E(e"t.r:1. e";,T;, I<+, -» is the defining function of the joint characteristic
function of intercompletion times when the duplicated (same) stimulus is in 82
stimUlus position 1 and the model represents the element processing system as com-
paring the early stimulus with that late stimulus in (82) position 1 first, and so on.
Similarly, the order is facilely given in terms of the +, - comparisons < +, -).

To enhance comparison of the serial and parallel expressions, the two corresponding
formulas for the joint characteristic function will be given together, serial first (S),
parallel second (P).

,,-
E[ ",- -,.-, I< )] P

11
e 1111,t:""II II -, - = ,,- _ is-.11 11

~2

"%2-=- isl2
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V21

vII + Vii - is21

V12
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(S), (1)

(P); (2)

. (S), (3)

. JP); (4)

(S), (5)

(P), (6)

(S), (7)

(P); (8)

(S), (9)

(P); (10)
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(8), (11)

+
V21

vII + vtl - istl
(P) (12)

First observe those characteristic functions which as a set are intrinsically related

to Theorem 1. These correspond to the trials with no + comparisons (Eqs. (1}-(4».
We note as in the general case, a type of greatu generality of the serial expressions.
This can be seen directly by setting the first and second parts of (I), (2)'and (3);(4)
equal to one another and solving for the serial variables (using the method of un-
determined coefficients of the variable "is").

By way of short cut, however, use of the previously developed mappings shows,
and inspection of (1}-(4) makes it intuitively reasonable that

P = vn/(vn + v2i),

if equivalence is to hold, even for (1}-(4) alone. But, this constrains Aii= Aii= Al-
which, in general, does not have to hold. The reverse mappings, SEM -+ PEM, are
of course,

V21 = (I - p) A1-,

and in both SEM -+ PEM and PEM -+ SEM, v22= A; , AI2= vl2.
Next, examine the joint characteristic functions for trials when the duplicated

stimulus is in 82 position I (Eqs. (5}-(8». Equations (5}-(8) as a set correspond to
Theorem 2, since + rates may differ from - rates, a + match occurs, but different
orders are pictured: Employing the same type of mapping as earlier, we find that if
total equivalence is to hold, that

or equivalently,

V21 = (I - p) Arl= (I - p) .\21,

and the second stage parameter mappings, as usual, are able to equal one another with
complete freedom. Again, the constraints necessary for total equivalence are placed
on the A'S, i.e., Aii = Atl' Notice that even if A did not otherwise differ according to
order, if A+~ A-, the parallel and serial processes could not be totally equivalent.

Equations (9}-(12) and the two characteristic functions associated with them are

--
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also pertinent to Theorem 2. The only difference is that here, it will be necessary that
Ail = All in order that total equivalence occur. In particular,

p = V~l!(VIl+ V~l)' All = VII + V~l = A~l= \ ,

or, IIr reverse,

Vii = PAii = PA:l , V:l = (I - p) All = (I - p) A~l

and ;:he second stage parameters are equal.
As noted, together Eqs. (5)-(12) depict behavior relating to the function with a

matching stimulus in 81 and 82, We have shown immediately above that total equi-
valence necessitates .\ll = A2i and All = Ail' However, Vll' v2i , VII' V!l can all be

different, although these ratios, vll!(vll + v2i),vii!(vii+ v~i)must be equal if total
equivalence is to hold. These two ratios must be equal to one' another because the
PEM ->- SEM mapping shows that both of these quantities must equal p. This
illustrates Theorem 3. It was shown there that placement of the matching stimulus in a
different place and calculation of the probability' that the same position (in 81 , 82)
pair is completed during a given stage, resulted in the same serial probability for the
two placements but two different parallel probabilities. Solving for p in (5), (6) and
then in (9), (10) proves this supposition in tqe present situation. Again, it should be
noted that this is an aspect of greater generality of para!lel processing.

The constancy of the p parameter is not the only place where PEM is more general
than the serial class. The rates are also involved via Theorem 4. Note for instance,

that A21and All both have to equal two different sums of v's for total equivalence to
hold (observe expressions (3), (4), (7), (8), and (I), (2), (9), (10), respectively), vii + vii
and viI + vZlboth equal AZl' and VII + v2i and VII + viI both equal All' Hence, if we
look separately at trials with and without a duplicated stimulus in 82 position 2, then
conditioned on order of processing, say position I first, then the distribution of
completion times for the first comparison will be the same (whether or not a duplicated
stimulus is present) for the serial models; the latter given by Aii!(All - is). The
parameters Atl ,Atl do not appear. The analogous eonditioned distributions for the
parallel models, on the other hand, will be given by (vII + VIl)!(vll+ vZl- is), for
trials with no duplicated stimulus and by (vII + vil)!(Vll+ ViI - is), with a duplicated
stimulus object, which are, in general, not equal.

When all the expressions for this particular paradigm are taken together «I )-(12»
we find that Atl = All' Aji = Atl , All = A2l and so, if total equivalence is to follow
it must be that Atl ~ All = Atl =.All'= AI' That is, there can be no + and - match-
rate differencesor order-dependent rate differencesduring stage I. Similarly, in PEM
we learn from the fact that Atl = vtl + v2i, Ali= VII+ vtl ,etc., and the equality
of the A'Sthat vlf = vtl = Vnand VII= V!l= V2lto ensure total equivalence. Thus, at

- ~ -- --.-
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stage I, the serial rates may not differ according to position or +, - distinctions and
the paralIel rates may differ according to position but not the +, - matchdifference.
On the other hand, SEM has p to represent position effects. At stage 2, vii = "22,
v12 = "12 , v!2 = "t2 , Vi2 = "i2' hence at this stage a fulI latitude of dependence on
order (on history) and + or - matching differences can occur.

'I11e price, of course, of conforming to the equivalence mappings (and thus yielding
total equivalence) is that models must give up the ability to predict different processing
rates for + and - comparisons during the first stage. Further, the serial models even

give up the latitude for distinct rates on different positions, being forced to discern
position effects by way of p and the stage 2 rates.

As noted above; in the class of potential statistics that in principle might test PEM
vs SEM are mean intercompletion times conditioned on serial position and order
events. For instance, in discussing trials containing a + match, it may be inferred

from Theorem 2 that the distribution to first completion time, conditioned on which
S2 stimulus position contains the duplicated stimulus and on which comparison takes
place first, should exhibit a particular type of greater generality for SEM. When the
duplicated stimulus is in (S2) position I, the characteristic function for PEM is given by
(ViI + v2j)/(Vil + v2i - is), independent of which comparison actualIy occurs first.
In the same fashion, the characteristic function when the second (S2) position is
occupied by the duplicated stimulus is (vII + vtl)/(vii + vtl - is), independent of
whether Sa position I or 2 is completed fir$t. But, the analogous distributions for the
serial models need not be equal:

Hence, a statistic that is capable of testing PEM and SEM on this basis is the
associated mean (minimum) completion time (first intercompletion time) condition-
alized as above, with resulting values

1
for PEM and ] .

""\"":t ' -=- , -=- , ""\"":t
"11 "21 "11 "21

for SEM

so that if "il =F"21 , "II =F"tl , PEM predicts a single mean value when the duplicated
stimulus is in position 1 (or 2) but SEM can predict 2 if a + comparison takes place
at a different rate than a - comparison, during stage ] on position 1 or 2. Similar
remarks can be made for the SEM-PEM differences connected with the other
theorems.

The difficulty in applying the above results and the related statistics is connected
with the difficulty of discerning (observing) which stimulus comparisons actualIy
occur first on any given trial in a typical experiment. Apart from such information,
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which would allow us to use means, stage 2 processing will be blended in and the
overall mean statistics will not suffice to distinguish the models. In the above experi-
ment, for example, the information typically obtainable in a reaction time experiment,
neglecting additional residue latency involvements, are serial position means on +
comparison trials and the overall mean on - comparison trials. These arc, for 8EM
and PEM:

E(T-) = p (~ + J__)+ (I - p) (~ +~)Au A22 '>'21 '>'12
(8),

VII I V2I

vII + vi-I + VII+ V21 . V22+ VII+ V21 . VI2'
(P);

1
(

I I
)E(TI+)=P'-t+(I-p) F+V"11 21 12

(8),

V21
+ + - +~ + -

Vu V21 Vn V21
V+ '

12
(P);

(
1 I

)
I

E(T2t) = P -=- + +""" + (I - p) I+'>'u '>'22 21
(8),

VII+ vii
+~

. I'U + vii V+ '
22

(P),

where E(T-) = comparison time on (exhaustive) no-stimulus-duplication trials,
E(T;+) = comparison time on (self-terminating) stilJlulus duplication trials with
i = I, 2 referring to duplication in 82 I or 2, respectively.

It is evident that both 8EM and PEM have sufficient flexibility relative to these
statistics engendered by the convolving of stages and relatively large numbers of
parameters, to fit an elephant. As is evident from earlier work (Townsend, 1971b,
1972) this does not mean that special cases may not be testable. For example, a PEM
submodel with parameters constant across different histories and values of nz is
:liverse at the level of mean processing times relative to say, a 8EM submodel with a
constant rate over order and nz (i.e., all '\'s equal) parameter; assuming self-terminatioJ1
on + matching trials. The rub is that there are other PEM (8EM) submodels (some

of them are quite reasonable in certain contexts) that are totally equivalent relative to
either of these tw~ special cases, and hence, the experiment is not really testing
seriality vs parallelity.

In the particular experiment described above, manipulating the number of elements
in the early and late sets does not seem to be very helpful either, since the capacity.

_..'-" -
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question then enters; that is, there is no a priori reason to expect the rates to be
unrelated to the number of elements that need be compared. Also, the processing path
distribution (SEM) or distribution of processing capacity via the rates (PEM or SEM)
may change under these conditions. What is needed is an experimental design that can
test a broad subset of PEM (SEM) models against some subset of the opposing class,
preferably at the level of means of some easily obtainable dependent variable.

6. A PARALLEL-SERIAL TESTING PARADIGM (PST)

Optimally, no submodel of the serial model (SEM) should be able to make pre-
dictions, at the level of observable means, that any submodel of the parallel model
(PEM) can make, and vice versa. Further, the ideal experiment would serve, given
sufficient trials, etc., to specify the specific member of the proper model that applies.

This completely optimal aim probably can never be achieved in the realm of "black
box" modeling. Nevertheless, the development below gives an experimental paradigm
that can test the total PEM, against the total SEM. In fact, PEM is tested against a
rather large class of additive serial models (i.e., a class including SEM) with the
following provision. The rates for matches must differ from the rates for mismatches.
If mean reaction time behavior is of the specified serial nature, then no PEM can be
totally equivalent to this class of serial models and vice versa. Moreover, the models
are diverse at the level of observable means and thus are mean-testable. .

The paradigm (PST) may be thought of as an elaboration of simple matching
experiments where three converging conditions contain T1 , T2 trial types and a third
type of trial with all 82 elements matching the 81 el~ment. These conditions together
with PEM and SEM meet the assumptions of Theorems 1-4 in such a manner that
observable mean diversity results. The pertinent theorems for PST are 3.and 4 and it
is therefore likely that other paradigms resting on Theorems I, 2 or various combina-
tions of 1-4 may also elicit observable forms Q.fdiversity.

The conditions are shown in stylized form in Table I with A referring to the (any)
81 stimulus that is duplicated in 82 and B refers to (any) 82 stimulus that is different
from A. It is the logical form of the paradigm that is important, not the particular
realization. For instance, 81 could contain two (A, B) rather than one stimulus and 82
could contain one (A) rather than two. The designations A, B need not refer to separate
stimuli. They might refer to categories or stimulus dimensions, for example.

Condition I simply demands of S that he determine the 82 position of the target.
Conditions II and III require that both 82 stimulus positions contain the target or that
at least one contain the target, respectively, in order for a "yes" response to occur. We
will investigate predictions of processing time rather than, say, probability correct.
Thus, the present predictions correspond to a high-accuracy reaction time experiment,
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TABLE I

Condition Response

Early stimulus: A

Late stimulus Set I, AB
Set 2, BA

yes
no

II

Early stimulus: A

Late stimulus Set I, AA
Set 2, AB
Set 3, BA
Set 4, BB

yes
no
no
no

III

Early stimulus: A

Late stimulus Set I, AA
Set 2, AB
Set 3, BA
Set 4, BB

yes
yes
yes
no

although there is no reason predictions cannot be extended to include low accuracy
conditions.

It should not be inferred from Table I that the same stimuli are presented on each
trial. Rather A simply represents the target, whatever it is on any particular trial and
B any nontarget. In fact, the BB in Condition II and III of Table I need not refer to
identical stimuli, as long as neither is identical to the target.

The derivations of the means for the various cases will not be given, since they are
completely standard. On the other hand, it is necessary that some rather tedious
algebra be dealt with in proving the nonequivalence results. The proofs are useful in
making apparent the structure of the models relative to the experimental design and
the aspects of the models whence diversity arises.

The present full class of parallel models PEM is considered. The rates can depend
on stage, 82 position and whether a comparison is + or -. The parallel paramete~
are, therefore (using our simplified notation),

(vi. , vii ,. vi2 , v22, Vi2, vl2 , vi. , vZi),

where viI gives the first stage rate for 82 position i with a . (- or +) comparison and

vis is the same f?r stage 2.

- ._.
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The SEM assumes that a + comparison can proceed at a rate different from that
of a - comparison and that the rates are in general dependent on stages, and S2
position, thus yielding the parameter vector,

<p, Ail' An , A~2, A22, A:; , A;-2, A~l, An).

T~ble 2 lists the mean processing time predictions of SEM and PEM for PST.
It is assumed that processing is self-terminating. Thus, in CI, either S2 stimulus
element gives full information and the matching process (comparator) never makes
more than a single comparison. Similarly in cn, 011 (I) requires exhaustive processing,
cn (2) processing concludes whenever S2 position 2 is completed, cn (3) whenever
S2 position I is finished, and cn (4) processing is curtailed after either of the S2
positions completes its match against Sl .Self-evident analogousremarks hold for CnI.

It should be remarked here that if B is known to the subject then he might compare
B, rather than A with the S2 stimuli. The theorems below go through just as well in

. this case. However, if both A and B are compared simultaneously with the S2 stimuli
with self-termination whenever either type of comparison gains sufficient information
to determine a response, I do not know if the theorems hold. In a number of interesting
cases the B's are selected from a rather large set (e.g., all the letters except a target
letter) and it would be very inefficient for the subject to match all members of this set
against S2 rather than the single target against S2 .

An especially interesting aspect, from an experimental point of view, of the suc-
ceeding theorem, is that it includes the presence of arbitrary additive residual reaction
time components, tf)' t. , that may be different (tf) =1= t.) for PEM and SEM, res-
pectively. A point in passing is that it is quite feasible to impose distribution assump-
tions on t1' and t. and then test the entire set of reaction time distribution predictions
associated with Table I. It certainly follows from the earlier theorems (as well as a
fortiori from Theorem 5 below) that the PEM and SEM distributions must be diverse.
However, such questions as that of independence of the residuals t. , tf) with respect
to the comparison times rather than simply additivity, immediately arise. So although
a distribution approach may prove fruitful, tbe present development avoids certain
pitfalls surrounding a distributional analysis of processing stages. Theorem 5 presents
the chief diversity and equivalence results.

THEOREM5. (A) If the stage I processing rates for either S2 positions I or 2 differ

for + and - comparisons (i.e., Ail =1=AI1(vil=1=vII) or A~l=1=A2i(v~l=1=vII» then PST
provides for observable mean diversity between PEM and SEM, even though to each PEM
and SEM expression for mean processing time is added the residual latency component
tf) , t., respectively.

(B) If none of the first stage rates of SEM or PEM differ accordingto whether
comparisonsare + or -, then SEM and PEM are observablemean equivalentrelative
to PST so longasp =1=0, I.
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(C) If the conditions of (B) hold with the exception that p = 0, I, then PEM
approximates SEM to an arbitrarily close degree in PST, but SEM is not able to mimic
PEM for arbitrary PEM parameter values.

Proof A. We proceed by reductio ad absurdum on the assumption that Aii *- Ali .
The proofs, if we instead assumed At1 *- A2i, vii *- vii or vfl *- v2i , are similar in form.

Assume the premise that PEM is not observable mean diverse under the present
characterization. Then from Table 2 we observe that

CI(I) '-= t. + !+ + (I -= fr-)
11 A21 vii + v21

-I- tf!'

CI(2) = t.+ L + (I - p)
A- Al-II 21 VII + v+ + t21 " ,

and

CI(I)+ CI(2)= P (A~ + A~) + (I - p) L~ + ~~ )+ 21s
Il 11 21 21

(13)

vii + v2i

I
+~~+2/'P'

vll -, v21

But we further note that

CII(4) + CIII(I) = p L~ + A~ )+ (I -p) L~ + A~) + 2t.
]1 11 21 21

(14)

vii + vii + v- + v- + 2t" .]1 21

Now, Eqs. (13) and (14), being the same in SEM, imply a constraint on a function of the
v's, namely,

CI(I) + CI(2) = CII(4) + CIII(I)

I I
=> + + - +---=-- +v]1 v21 vll + v21

+ + + + - + -
v]1 v21 v]1 v21

(15)

A little algebraic inspection of (15) shows that for PEM == SEM at the level of mean
processing times in PST means that PEM == SEM =>[vtl = v2i= V21or ~.t1=
VII = v1J, without loss of generality, set v~l = v2i = V21. This result comes from the
diversity associated. with Theorem 4. .

It then follows that in PEM, CI{I) = CIII(I) and CI(2) = CII(4), which is only
true in SEM if At1 = A21. or p = I. If we had set vii = VII= Vll , then we would have

obtained Ail = ~ll or P = O. At this point, those PEM representatives supposing
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neither V~I= v21nor vii = VII are excluded, as are those SEM representatives that
assume neither that "~I = "21 nor "il = "II . But, it must now be verified that the

remaining submodels of SEM and PEM also cannot be equivalent.
Assume first that "~I = "u . Then, with little effort we obtain not only

CIII(2) - CHI(I) = (I - p)"il

CH(3)- CII(4)= (I - p) .=
"II

vIII

vMvil + vII)
(16)

vn

vII(vII + vn)
(17)

(18)

(19)

but also

CII(I) - CII(2) = P(~ - ~ ) + (I - p)
,,+ ,,- ,,+12 22 1:&

(20)

or

CIII(4) - CIH(3) = P (~- -k-)+ (I - p)"22 "12 "II
(21)

It can be observed that the constancy of pin (18), (19) is contradicted by

in the same expressions, a result associated with Theorem 3.
More formally, plug the equivalences obtained in (16), (18), (19) into (20) to derive

the following equation in the v's. '

+
Vll

vilvtl + vn)

Vll

v21(vn + vu)

i
vri

(~ _ ~).vii v22

--- --
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And it follows immediately that viI = vii; or substituting(17HI9) in (21) would
again imply this result. But now, substituting ViI = vii ==V11back into CI(I), CI(2)
yields Ail = Aii, which contradicts our original hypothesis.

It remains to show that a contradiction still appears if we assume instead of A~i= A;i,
that p = I. If P = I then CII(3) - CII(4) (recall that v~1= v21)implies that

v21/v12(vll + V21)= 0.

Hence either V21= 0, which is in violation of the tenets of a parallel process, that the
rates should be nonzero for all unfinished comparisons at all stages, or vl2 = +00 or
VII ~ +00, which contradicts our postulate concerning finite processing rates.

In any case, vt2 = Vl2 = +00 (an attendant manipulation gets vt2 = +00) implies

that vii = vii (examine CI(I), CII(I), CIII(3) when p = I, vt2 = vl2= + 00) which
again implies that At. = Aiiagain resulting in a contradiction. If vii = +00 or vii =
+ 00 then we cannot even obtain finite predictions for CI.

Proof (B). Note first that the unobservable I p , I. were treated as variables that
could only obscure diversity, that is, promote PEM-SEM equivalence. Hence it is
sufficient to show equivalence results when If) = t. .

It may then be ascertained through simple algebra that the following mappings
constituteequivalentPEM and SEM mod~ls. .

The SEM - PEM mappings. Set

( pI - P )
-1

v11 = --x-- + A - v21 ,11 21

where V21is fixed at some value such that

( pI - P )
-1 .

--x-- + ~ > V21 .11 I

Next, let

(.) (.)

(
pI - P ) !

V12 = A12 V21 + A I _ P"11 21

and

(.) (.) [ ( pI - P
)]

I
V22 = A22 I - V21 All + ~I p,

where' = +, -.
ThePEM _ SEM mappings. Letp bearbitrarybut containedin (0, I). Next,let

( I _
All = V11 + V21

I-P )!
~I p'

.--.---.-
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where "21 is chosen so that the difference in parentheses is greater than zero. Next, let

,,(.) _ (1 - p) V~~(Vll+ V21)1! - ,
V21

where' = +, -, and the proof of B is completed.

Proof C. Without loss of generality, let p = I. Then we obtain from Table 2,

1 _ 1 l _ . Vu

'\u - Vu + v21 ' '\22 - v22(vU+ v21)

I Vu
V21 _ = + ( + )o= , "t2 v22 Vu v21

and

It is clear that SEM cannot mimic arbitrary parallel behavior. However, the PEM
can clearly approximate SEM by picking appropriate v's, in particular, letting VISand
Vi2 be so large that

V21

vI2(v1:+ v21)
and Vu

vMv1:+ V21)

are as close to zero as desired. Q.E.D.

It may be noted that letting Vi2' vl2 be very large in Theorem 5(C) has different
connotations from doing the same thing in 5(A). The reason is that in 5(C) no con-
straints are imposed on other allowable parameters. But, in 5(A), letting vis and VISbe
very large results in constraints on the ability of the models to reflect +, - processing
rate differences in data; for. example, viI must pe close to VIIin value.

As a simple example of 5(A), assume that the serial model is true with parameters,
p = 0.80, ,\+ = 0.04 comparisonsjmsec, ,\- = 0.013 comparisonsjmsec. That is, there
is a fairly high likelihood of processing the tuple with the first-position member of Ss
first and while there is a +, - processing rate difference, order and identity of the pair
do not otherwise matter. The value ,\+ = 0.04 and ,\- = 0.013 correspond to average
elapsed times of 25 and 75 msecjcomparison.

Now, recall that SEM predicts that CI(I) + CI(2) = CII(4) + CIII(I), which
is false for PEM unless v21= V!1 (or viI = vii). But, if say, vii.= V!I' then PEM
predicts that CI(I) = CIII(I), CI(2) = CII(4). Since the values ofthe data are CI(I) =
35msec, CIII(I) = 25 msec, CI(2)= 65msec, CII(4) = 75msec,PEM is falsified.
Similarly,if all the v-'s = 0.013and the v+'s= 0.04comparisonsjmsec,then CI(I) =

-- -
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CI(2) = 18.9 msec, CII(4) = 38.5 msec, CIII(I) = 12.5 msec, and CI(1) + CI(2) =
37.8 *" CII(4) + CIII(1) = 51 msec, so in this case SEM would be falsified.

Of course, in the caseof SEM being true, more complicated cases could arise, for
instance, with Ail = A; but Ail *" All' but similar consequences would nevertheless
result. Further, it appears that the structure of the paradigm essentially entails some
nonparametric tests; for example, the predictions by additive serial models (inclusive
of SEM) that CI(I) + CI(2) = CII(4) + CIII(1). This latter is a strong prediction
by a very large class of models.

We neglected tp, t. in the example, but with no loss of generality. Methods-of-
moments estimates of all the parameters do not appear feasible, at least by hand, but
least squares or chi-square estimates should permit numerical fits.

The preceding theorem (Theorem 5) demonstrates that the experimental paradigm
given in PST is sufficient assuming that "same" comparisons are processed at a
different rate than "different" comparisons to exploit the distribution diversity
between SEM and PEM on an observable mean diversity level; even with the inclusion
of additive residual latency components that could be different for SEM and PEM.

7. CONCLUSION

In addition to analytic tests developed so. far, certain types of empirical results are
sometimes acquired which are more intuitively predicted by, say, parallel than by
serial processes, or vice. versa and some of these are mentioned in earlier papers
(Townsend, 1971b, 1972).

As noted earlier, Thomas has recently contributed to the development of non-
parametric tests of parallel and serial predictions. The tests developed there were
limited to mismatching ( -I) comparisons and to stage-I completion times. On these
aspects, the present treatment is more general. However, Thomas' (1969) basic
parallel assumption was that of within-stage independence and hence was more
general than the parallel-exponentiality assumed in PEM.

Thomas' results were based on a two-dimensional experimental paradigm with
three sets of conditions. One of the conditions required a positive response if a specified
one of two displayed stimulus dimensions was an appropriate value, otherwise a
negative response was to be made. The second condition was just a reversal of the first;
a positive response was to be made if the other dimension attained the proper value,
otherwise a negative response was required. The third condition required a positive
response only if both dimensions were at the proper value, .otherwise a negative
response was to be .made. The nonparametric tests were developed relating the way
the negative time distribution in the third condition could be serially or parallelly
composed of those negative response-time distributions from the other two conditions.

Thus, an implic~t assumption is that the negative processing distributions remain the

--"..: ,-~...-
---.....--........ u ___..
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same in all three conditions. This assumption is not too unlikely from an intuitive
standpoint if processing is serial but there may well be changes in capacity require-
ments when the number of stimulus dimensions to be attended to in parallel is altered.
One of the prime sources of difficulty in parallel-serial testability has been the intuiti-
vely acceptable ability of limited capacity parallel models to mimic standard serial
models in just such experiments (see, e.g., Townsend, 1974). We finally remark in
these connections that the consequences for Thomas' (1969) results have apparently not
been investigated when a residual latency variable (analogous to tp , t,) with nonzero
variance is convolved with the processing time variables.

As far as I can determine, the present development, cultimating in Theorem 5,
represents the first case of an experimental paradigm that can be shown to analytically
separate fairly general parallel serial models at the level of observable mean reaction
times. To appreciate the generality of the models one merely has to note that there
are only two more degrees of freedom in the data than there are parameters in the
parallel model, PEM, and only one more than the serial, SEM; or that one can predict
positive, negative or no dependence between the processing of individual stimulus
elements (that is, between the comparisons of 81 with the two members of 82), It is
axiomatic that any simpler submodels of PEM and SEM are a fortiori also testable,
with the constraint that ,\+ #- ,\- or v+ #- v-.

One type of generalization of the above theory would take the direction of letting
the rate on one comparison depend on wpether another comparison is a match or
mismatch. .For example, we could write v+- as the parallel rate for the pair with serial
position I when it is a + match but the pair in serial position 2 is a -.: match. The
full class of PEM and SEM extensions of this sort are not observable mean diverse

with respect to PST, but there are "Gestalt" subcases where the models are still
testable (Townsend & Snodgrass, 1974).

Finally, a cautionary note should be sounded concerning the possibility that the
converging conditions I, II and III of PST may induce processing of a sort qualitatively
different in the three cases (e.g., exhaustive processing in one, self-terminating in the
others, etc.). This is a question that must ultim~tely be referred to empirical test in any
given cognitive context.
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